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1. EXECUTIVE SUMMARY
The telecommunications industry is undergoing a significant transformation, driven by the 
integration of Artificial Intelligence (AI) across networks. As AI advances, it will become 
increasingly integral to the design, optimisation, and automation of telecommunications systems; 
particularly in the context of Terrestrial Networks (TN) and Non-Terrestrial Networks (NTN). This 
white paper explores the role of AI in shaping the future of telecommunications, with a focus on 
the integration of AI into various network components, from Radio Access Networks (RAN) to core 
networks and edge devices. It also highlights the synergies between AI and satellite technologies, 
emphasising their combined impact on enhancing global connectivity and reducing latency.

The paper delves into AI-driven network 
optimisation, highlighting key components such 
as Federated Learning (FL), generative AI, and 
Network Data Analytics Functions (NWDAF). It 
also addresses the challenges and opportunities 
presented by AI in the telecommunications 
industry, including data privacy, security, and the 
ethical deployment of AI. A particular focus is 
placed on the evolution of AI in 3rd Generation 
Partnership Project (3GPP) standardisation 
efforts, which are essential for aligning industry-
wide practices and ensuring interoperability 
across diverse networks.

In addition to discussing current applications, 
this white paper looks forward to the future of 
AI in networks, particularly in the context of 6G. 
AI is expected to be a fundamental element of 
6G networks by enhancing system performance, 
enabling automation, and improving the overall 
user experience. Key hardware advancements 
such as neuromorphic computing, quantum 
computing, and AI-optimised chips are explored 
as essential enablers of AI-native 6G networks. 

Furthermore, AI for the cyber-physical world will 
drive innovations such as digital twins, physics-
aware AI, and advanced security protocols, 
which will ultimately enhance the robustness 
and intelligence of future telecommunications 
infrastructures.

As the industry prepares for the next generation 
of telecommunications, the AI-native approach 
in 6G will redefine the landscape and create 
new opportunities for efficiency, flexibility, and 
intelligence in network management.

This white paper provides a comprehensive 
roadmap for stakeholders – governments, 
telecom operators, and technology developers – 
towards a future where AI plays a central role 
in the evolution of telecommunication networks. 
The focus is on fostering collaboration, investing 
in advanced AI technologies, and developing 
standardised frameworks to ensure a smooth 
and secure transition to AI-driven, 6G-enabled 
telecommunications systems.
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2. INTRODUCTION

The integration of AI into telecommunications 
networks is transforming the industry, with 
profound impacts on both terrestrial and non-
terrestrial networks. Terrestrial networks, 
comprising traditional land-based infrastructure, 
are the backbone of global connectivity, while 
non-terrestrial networks, comprising satellite 
systems, high-altitude platforms, and Unmanned 
Aerial Systems (UAS), extend communication 
capabilities to remote and underserved areas. 
Together, terrestrial and non-terrestrial networks 
form a comprehensive communication ecosystem 
that aims for seamless connectivity across diverse 
environments. 

AI plays a pivotal role in optimising these 
networks, addressing challenges such as 
resource allocation, dynamic traffic management, 
interference mitigation, and security threats. 
For non-terrestrial networks, the use of AI 
enhances adaptive network planning in the 
presence of rapidly changing conditions, such as 
satellite mobility and atmospheric interference. 
In terrestrial networks, AI enables efficient 
operations, robust fault management, and 
enhanced user experiences. This convergence 
is crucial for the evolution of 6G networks and 
beyond facilitating seamless global communication 
and the expansion of Internet of Things (IoT).

2.1 TELECOMMUNICATIONS 
IN THE ERA OF AI-DRIVEN 
TRANSFORMATION

Telecommunications is undergoing a profound 
transformation driven by the exponential growth in 
connectivity demands, the proliferation of connected 
devices, and the increasing complexity of modern 
networks. A 5G network is 100 times faster than 
its predecessor, and its low latency provides the 
quick reaction needed for real-time applications. 
In 2018, Ericsson predicted that there would be 
1.5 billion 5G subscriptions worldwide by the end 
of 2024. 

However, due to the swift adoption and strong 
consumer interest in the technology, the company 
revised its estimate to 1.9 billion in 2019[1]. GSMA 
predicts that 5G has been the fastest mobile 
generation rollout to date, exceeding one billion 
connections by the end of 2022 and reaching 1.6 
billion by the close of 2023. Approximately 5.5 
billion connections are expected by 2030[2].

The International Telecommunication Union 
(ITU) has identified three major categories 
of applications that are based on network 
performance and user Quality of Experience (QoE): 
enhanced Mobile Broadband (eMBB), massive 
Machine-Type Communications (mMTC), and Ultra-
Reliable Low-Latency Communications (URLLC).

The number of devices that can connect to 5G 
could exceed that of 4G devices 100-fold, allowing 
connectivity between Autonomous Vehicles (AVs), 
smartwatches, drones, Mixed Reality (MR) headsets, 
and other IoT devices. Moreover, leveraging the 
large coverage area of satellites, a large number of 
IoT devices can be effectively supported in mMTC 
applications. URLLC applications include mission-
critical communications that require high-reliability, 
such as remote medical surgery and telemedicine, 
which has the potential of lowering the cost of 
healthcare by $305 billion per year[4]. 
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By leveraging advanced Machine Learning (ML) 
algorithms, data analytics, and automation, AI has 
the potential to reshape the telecommunications 
landscape by:

• Automating complex operations: AI could
replace traditional manual processes with
intelligent automation, enabling networks
to self-manage and adapt dynamically. This
allows for significant reduction in human
error and the enhancement of operational
efficiency. Self-Optimising Networks (SONs)
can autonomously adjust parameters,
including signal strength, frequency allocation,
and routing paths based on real-time
network conditions.

• Enhancing scalability: AI algorithms have
the potential to dynamically adapt to growing
network demands, ensuring seamless
performance – even as the volume of devices
and data increases. AI would use predictive
analytics to anticipate network usage trends
and scale resources proactively.

• Optimising resource allocation: AI could 
enable precise and real-time adjustments
in bandwidth, spectrum, and computational 
resources for optimal utilisation and reduction 
of wastage. AI algorithms can be trained to 
learn network usage patterns and identify 
underutilised frequency bands to reallocate 
them to high-demand areas. AI can adjust 
power usage dynamically, reducing energy 
consumption and supporting green initiatives 
in telecommunications.

• Predictive maintenance: AI revolutionises 
network maintenance by shifting from 
reactive to proactive approaches. Instead
of waiting for issues to disrupt operations, 
proactive diagnostics reduce downtime
and operational disruptions by identifying 
potential issues before they escalate. ML 
models can be trained on historical data to 
predict equipment failures, allowing operators 
to schedule maintenance proactively. The 
model can predict the root cause of issues, 
reducing the Mean Time To Repair (MTTR), 
hence minimising the downtime and 
enhancing customer QoE.

Fig. 1: 5G Ecosystem – confluence of 5G, Edge and AI[3].

eMBB 
(enhanced Mobile Broadband)

AI 
- Network automation
- Machine learning

Edge computing 
- Network gateway
- Customer premise
- Edge device

5G 
- Virtualization
- Cloudification
- Network slicing

mMTC 
(massive Machine-Type 
Communications)

URLLC 
(Ultra-Reliable Low-Latency 
Communications)
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2.2 AI AT THE EDGE

Edge computing, including Multi-Access Edge 
Computing (MEC), as defined by the European 
Standards Organisation and the European 
Telecommunications Standards Institute (ETSI)[5], 
complements cloud computing by processing data 
closer to end-users, reducing latency and network 
congestion, and enabling latency-critical applications, 
such as autonomous vehicles and robots, to fully 
leverage the capabilities of 5G.

AI has become the key driver for the adoption of 
edge computing[3]. AI at the edge enables rapid data 
processing and real-time decision-making for critical 
applications, including machine control, remote 
surgery, and AI-assisted driving. It improves user 
experiences, enhances security by analysing sensitive 
data locally, and reduces reliance on centralised 
cloud storage.

2.3 SYNERGIES BETWEEN SATELLITE 
AND AI IN TN/NTN

The satellite communication ecosystem is 
undergoing a significant transformation, marked 
by cutting-edge technological advancements that 
are shaping a new space age. Lower orbits are 
emerging as a promising low-latency alternative 
to the conventional Geostationary Orbit (GEO) 
systems. Most existing satellite communication 
systems depend heavily on human expertise and 
manual operations[6], which present two main 
issues. First, human intervention in system control 
processes contributes to increased operational 
expenditure and delays. 

Second, the rapidly evolving radio environments 
in modern space scenarios demand self-adaptive 
mechanisms that go beyond the limits of manual 
control. Additionally, the growing variety of 
applications and services enabled by satellite 
communication in the near future will generate 
massive amounts of data. To address this, satellites 
must be equipped with the ability to autonomously 
process this data and make reliable, independent 
decisions[7].

The two primary applications with significant 
potential for NTN are eMBB and mMTC, driven by 
the broad coverage area offered by satellites[8]. 
This capability allows satellite systems to provide 
connectivity to underserved or unserved regions, 
such as islands, ships, aircraft, and remote areas, 
where terrestrial communication infrastructure is 
either limited or unfeasible. Satellites are essential 
for ensuring global connectivity, particularly in 
regions with inadequate terrestrial networks. 
The integration of AI further enhances their 
performance by:

• Beamforming optimisation: AI adjusts 
satellite beams dynamically to maximise 
coverage, enhance signal quality and minimise 
interference, addressing challenges posed by 
diverse geographies.

• Mobility management: AI ensures seamless 
and uninterrupted connectivity by intelligently 
managing handovers between terrestrial and 
satellite networks. 

• Energy efficiency: AI-driven optimisation 
minimises power consumption in satellite 
operations, contributing to long-term 
sustainability and significantly reduced 
operational costs.

• Advanced traffic analysis: AI-enabled traffic 
prioritisation ensures critical applications 
receive the necessary bandwidth, improving 
user experience across remote and urban 
settings.
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However, modern RAN architectures like Cloud 
RAN (C-RAN), Open RAN, and O-RAN offer greater 
flexibility, scalability, and cost-efficiency by 
enabling centralised, disaggregated, and open 
network solutions.

3.1.1 AI IN CLOUD RAN (C-RAN)

Cloud RAN (C-RAN) is a centralised architecture 
where baseband processing functions are moved 
to a cloud-based data centre instead of being 
distributed across individual base stations. 
This approach decouples the hardware from 
the software and enables the centralisation of 
processing power, allowing for greater flexibility, 
scalability, and cost efficiency. AI plays a crucial 
role in enhancing the capabilities of Cloud RAN by 
optimising and managing network operations[9-12] 

using:

• Intelligent resource management:  
AI algorithms can predict and dynamically 
allocate resources based on real-time traffic 
conditions, ensuring optimal performance 
across the cloud infrastructure.

• Load balancing and traffic steering:  
AI can identify patterns in traffic loads and 
user behaviour, adjusting network functions 
to distribute traffic more efficiently across 
the cloud infrastructure, thus minimising 
congestion and improving Quality of 
Service (QoS).

• Predictive maintenance: AI can be used to 
monitor the health of network components, 
detecting potential failures or anomalies 
before they cause service disruptions. This 
enables proactive maintenance and reduces 
downtime.

The integration of AI in terrestrial and non-
terrestrial networks lays the foundation for 
emerging technologies such as IoT, smart cities, 
and autonomous systems.

3.1 AI IN THE RADIO ACCESS  
NETWORK (RAN)

RANs connect user devices to the core network 
and handle radio communication tasks such as 
signal transmission, resource management, and 
handovers. AI can leverage vast amounts of 
data generated by the RAN to make intelligent 
decisions in real-time, enabling the network to 
self-organise, self-optimise, and self-heal. This 
capability is particularly important for managing 
dynamic network conditions, such as varying 
traffic loads, interference, and mobility patterns. 
Specific applications include:

• Dynamic beam management:  
AI-driven algorithms dynamically optimise 
beamforming, increasing throughput and 
reducing latency, particularly in densely 
populated urban environments and 
challenging terrains.

• Channel State Feedback (CSF):  
AI compresses and reconstructs CSF data, 
enhancing spectrum utilisation while 
significantly reducing network overhead and 
latency.

• Energy-aware RAN operations: AI identifies 
patterns in energy consumption and 
implements adaptive measures to improve 
the power efficiency of RAN infrastructure.

Traditionally, RANs have relied on proprietary 
hardware and tightly integrated software, making 
them inflexible and difficult to optimise. 

3. THE INTEGRATION OF AI IN TN/NTN
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3.1.2 AI IN OPEN RAN AND O-RAN

Open RAN and its advanced evolution, O-RAN, 
are designed to provide flexible, open, and 
interoperable network architectures. It is here 
where AI can play a key role in optimising 
network performance: AI enables real-time 
management, automation, and efficiency across 
both Open RAN and O-RAN environments to meet 
the dynamic needs of modern 5G networks and 
beyond. Key AI contributions include:

• Interference mitigation and automation: 
AI detects and mitigates interference by 
dynamically adjusting parameters such as 
power levels and antenna configurations. 
It also enables Self-Organising Networks 
(SON) that can autonomously configure, 
optimise, and troubleshoot the network, 
improving efficiency with minimal manual 
intervention.

• AI-powered integration and decision-
making: AI automates the configuration 
and optimisation of RAN components from 
different vendors, while providing real-time 
analytics for proactive decision-making – with 
the aim of improving network performance 
and reducing operational costs.

In addition to these advancements, the 5G 
Americas O-RAN white paper[13] highlights several 
important areas of focus for O-RAN’s future, 
particularly in the context of 6G and beyond.  

The O-RAN Alliance’s Next Generation Research 
Group (nGRG) is researching open and intelligent 
RAN principles that will be essential for the 
development of 6G networks. These principles 
emphasise pervasive AI/ML across all domains, 
cloud-native and sustainable architectures, and 
enhanced security. Notable research efforts within 
the O-RAN framework also include:

• Native AI architecture in O-RAN: The O-RAN 
Native AI Architecture reports[14,15] focus on 
the requirements and general principles of 
AI in O-RAN, exploring both centralised and 
distributed AI architectures. This includes 
the integration of AI with digital twins, core 
networks, and management domains, while 
also addressing the need for new interfaces, 
protocols, and the management of cross-
domain AI lifecycles.

• Spectrum sharing with shared O-RU: 
Another critical area of research involves 
spectrum sharing for better utilisation of this 
limited resource. The research conducted 
by O-RAN next Generation Research Group 
(nGRG)[16] proposes a “neutral host” approach 
for shared use of Open Radio Units (O-RUs), 
among multiple operators, to improve 
spectrum efficiency. This concept extends 
to public, private, and governmental users 
and is radio technology agnostic, making 
it a valuable addition to O-RAN’s future 
capabilities. 
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3.2 AI IN CORE NETWORKS

AI plays a critical role in optimising and 
managing core networks within both TN and NTN 
environments. The core network is responsible 
for routing, processing, and managing data traffic 
between different network components and 
services, making it a central part of the overall 
network architecture. By integrating AI, core 
networks can become more intelligent, agile, and 
capable of handling the complex demands of next-
generation services and applications.

3.2.1 NETWORK DATA ANALYTICS   
  FUNCTIONS (NWDAF)

NWDAF play a pivotal role in enhancing the 
performance and efficiency of core network 
environments by using AI and ML techniques 
to collect, analyse, and interpret network data, 
enabling operators to make informed decisions 
to optimise network operations. Key functions 
include:

• Traffic analysis and optimisation:  
Real-time analysis of traffic patterns enables 
dynamic load balancing and efficient resource 
allocation for better QoS.

• Predictive analytics: ML models predict 
network issues like congestion or failures, 
allowing for preventive actions, especially 
in non-terrestrial networks with variable 
conditions.

• Network performance monitoring: 
Continuous monitoring helps optimise the 
core network, improving efficiency and 
reducing downtime.

Nokia introduced its commercial NWDAF in early 
2022, leveraging AI and ML to enable applications 
to access network data via a consume/publish 
model[17]. This solution targets fast-response 
applications for connected devices, offering 
benefits such as improved QoE, IoT security, 
and network optimisation. It is available both 
on-premises and as a cloud-native, consumption-
based service on Google Cloud.

3.2.2 GENERATIVE AI 

Generative AI (GenAI) in telecommunications 
refers to the use of advanced ML models, 
particularly Large Language Models (LLMs) 
and multimodal systems, to generate insights, 
automate processes, and optimise network 
operations. These AI models go beyond traditional 
analytics by providing context-aware responses, 
predictions, and solutions.

The use of LLMs in telecommunications is rapidly 
expanding. Initially developed for natural language 
processing, LLMs now play a key role in tasks 
such as network optimisation, traffic prediction, 
and troubleshooting[18]. By learning from historical 
network data, LLMs can forecast traffic loads, 
helping to optimise resources and prevent 
congestion – a critical capability as 5G and IoT 
networks generate increasing volumes of data. 
LLMs also assist in troubleshooting by analysing 
network logs to identify problems and suggest 
solutions, while automating tasks, including 
configuration and load balancing. Despite their 
potential, challenges such as high computational 
costs remain, especially at the network edge, 
prompting the use of Parameter-Efficient Fine-
Tuning (PEFT)[19] techniques, such as Quantized 
Low-Rank Adaptation (QLoRA)[20], and split edge 
learning (distributed learning).

Another GenAI application is alignment via 
RAG[18]: GenAI supports alignment in terrestrial 
and non-terrestrial networks by leveraging 
Retrieval-Augmented Generation (RAG) to access 
dynamic databases containing up-to-date 3GPP 
standards and regulatory guidelines. This ensures 
telecommunication models remain compliant with 
evolving requirements, while optimising wireless 
system performance. By integrating reinforcement 
learning with wireless feedback, GenAI models 
can adapt their responses to QoE for network 
agents, enabling smarter, regulation-aware 
network management.
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Datasets play a crucial role in GenAI, serving 
as essential resources for training, fine-tuning 
for specialised tasks, and evaluating models for 
telecommunication applications. They enable these 
models to recognise patterns, generate accurate 
predictions, and optimise various aspects of 
network management and operations. Examples 
of telecommunication datasets include TeleQnA[21], 
TSpec-LLM[22], Tele-llms[23], Spec5G[24], and 
Oran-bench-13k[25]. 

3.2.3 FEDERATED LEARNING

FL has emerged as a transformative approach 
in AI[26], enabling collaborative model training 
without sharing raw data across devices or 
networks. The implementation of FL in core 
networks addresses critical challenges related to 
data privacy, latency, and scalability. Integrating 
FL into these networks allows for distributed AI 
model training directly at edge devices or local 
nodes, minimising data transfer and enhancing 
security. By leveraging the hierarchical architecture 
of core networks, FL ensures that models are 
updated locally and aggregated securely at the 
core, preserving user privacy while optimising 
resource efficiency. 

This decentralised approach also supports latency-
sensitive applications, such as autonomous 
systems, remote healthcare, and next-generation 
IoT, by reducing the reliance on centralised data 
processing. FL aligns seamlessly with terrestrial 
and non-terrestrial networks’ goals of low latency, 
high reliability, and robust security, making it an 
essential component in the evolution of intelligent, 
interconnected systems.

Recent research by Ericsson demonstrated how 
FL can be seamlessly integrated into the 3GPP 
5G NWDAF architecture[27]. The study introduced a 
Multi-Party Computation (MPC) protocol to protect 
the confidentiality of local model updates during 
aggregation. Such advancements address the 
critical concern of end-user privacy and enhance 
the practical deployment of FL in real-world 5G 
networks.

Fine-tuning LLMs traditionally requires vast 
amounts of labelled data and centralised training, 
which poses challenges related to privacy, 
data ownership, and computational costs. 
Hence, FL offers a decentralised alternative, 
allowing multiple clients to train a global model 
collaboratively while keeping data local. This 
preserves privacy and mitigates risks associated 
with centralised data aggregation. 

However, standard FL approaches optimise for a 
single global model, which may not generalise 
well across diverse datasets and tasks. To 
address this, Federated Multi-Task Learning 
(FMTL)[28] extends FL by enabling clients to train 
personalised models, while still benefiting from 
shared knowledge. By representing clients as 
nodes in a graph and modelling task similarities 
as edges, FMTL helps develop models that are 
both specialised and informed by related tasks.

3.3 END-TO-END AI-DRIVEN NETWORK 
OPTIMISATION

End-to-End (E2E) AI-driven network optimisation 
refers to the comprehensive application of AI 
and ML models throughout the entire lifecycle of 
a telecommunication network – from planning 
and design, to real-time management and 
optimisation. These solutions leverage AI 
techniques to automate processes, optimise 
resource allocation, and improve the QoS across 
the network’s various segments.
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3.3.1 KEY COMPONENTS 

AI-based network optimisation spans several layers, including network planning, real-time operation, 
anomaly detection, traffic management, and fault management. Below are the main components that 
facilitate an intelligent, self-optimising network.

Key components of  
AI-driven optimisation

Description

Network Planning &  
Design Optimisation

AI models are used to optimise the network design by analysing demand 
projections, geographical data, and traffic patterns, ensuring that both TN 
and NTN infrastructures are scalable and efficient.

Traffic Forecasting &  
Load Balancing Across Layers

AI forecasts traffic demand and adjusts traffic load distribution across 
multiple network layers (access, transport, core, and NTN), ensuring optimal 
performance at all levels.

Real-Time Resource Allocation  
& Scheduling

AI enables real-time allocation of network resources (e.g., bandwidth, 
spectrum, compute power) across all network segments, minimising 
congestion, balancing loads, and enhancing service quality.

E2E Fault Management &  
Self-Healing

AI-driven solutions identify and mitigate network faults across the entire 
system, from edge to core and NTN. AI models proactively reconfigure 
paths, reroute traffic, and restore service autonomously.

Holistic QoS Optimisation
E2E optimisation ensures that all layers are fine-tuned to provide consistent 
QoS, adjusting latency, bandwidth, and throughput dynamically across 
terrestrial and satellite-based components.

Multi-Layer Anomaly Detection 
& Security

AI continuously monitors the entire network for anomalies, from the edge 
devices through the core to NTN. It can detect and mitigate security threats, 
network congestion, or faults across all network segments.

Integrated Spectrum &  
Radio Resource Management

AI optimises spectrum usage and resource allocation across both terrestrial 
and NTN networks, ensuring seamless integration and minimising 
interference between network layers.
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3.3.2 AI TECHNOLOGIES DRIVING NETWORK OPTIMISATION

The following AI techniques play a crucial role in the E2E optimisation of terrestrial and non-terrestrial 
networks:

AI Technologies Description

ML & Deep Learning (DL)
These AI techniques are used across the entire network lifecycle to predict, 
optimise, and manage resources in real time and during network planning.  
ML/DL models are trained to handle diverse data inputs from both TN and NTN.

Edge Computing with AI
AI at the edge of the network ensures that data processing is distributed 
efficiently, reducing latency and enabling real-time decision-making for E2E 
optimisation.

Predictive Analytics
AI-driven predictive analytics enables proactive management, anticipating issues 
(like congestion or failure) across all layers, from core to edge, in both terrestrial 
and satellite networks.

Reinforcement Learning (RL)
RL is applied to dynamically optimise E2E processes like routing, load balancing, 
and spectrum allocation based on rewards and penalties, adapting as conditions 
change in the network.

Graph Neural Networks 
(GNNs)

GNNs model complex relationships across network topologies (e.g., inter-layer 
communication in TN and NTN), allowing for optimal routing, load balancing, and 
decision-making in large, multi-layered networks.

3.3.3 CHALLENGES IN IMPLEMENTING     
  E2E OPTIMISATION

Implementing E2E AI-driven network optimisation 
in TN/NTN presents several challenges. One of the 
main difficulties is integrating AI across multiple 
network layers, such as the core, access, edge, 
and NTN. Each layer has unique systems and 
protocols, making seamless coordination complex. 
Additionally, data is often restricted within specific 
network layers, making it challenging for AI to get 
a full view of the entire network for optimisation.

Real-time processing also becomes a challenge, 
as AI must handle large data volumes and 
make quick decisions without introducing 

latency. This is particularly difficult in NTN where 
satellite communication can introduce delays. 
Another obstacle is ensuring that AI systems are 
compatible across different technologies like 5G 
and satellite-based systems, which have varying 
requirements (latency, bandwidth, computational 
resources, etc.).

Security and privacy concerns are heightened 
when AI uses large amounts of network data, 
and there’s always the risk of attacks targeting 
AI models. Finally, scalability is a challenge 
as the network grows, and AI systems must 
adapt to increasing traffic and new technologies, 
which requires continuous model retraining and 
adjustments.
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3.4 AI IN DEVICES

AI’s integration into end-user devices enhances 
functionality, user experience, and connectivity. 
Examples include:

• Mobile phones: AI powers personalised 
applications, advanced speech recognition, 
real-time language translation, and 
adaptive battery optimisation. It also 
enhances connectivity settings by 
analysing network conditions.

• Laptops and PCs: AI-driven tools 
improve productivity with intelligent 
task scheduling, enable seamless video 
conferencing with noise suppression 
and background adjustments, and 
enhance security with behavioural-based 
threat detection.

• Connected vehicles: AI supports 
autonomous driving by processing 
sensor data for navigation, traffic 
analysis, and Vehicle-To-Everything 
(V2X) communication. It ensures safety 
and efficient vehicular operations by 
anticipating road conditions and optimising 
energy usage.

• Home Customer Premises Equipment 
(CPE): AI in routers and modems 
dynamically adjusts Wi-Fi coverage, 
proactively resolves connectivity issues, 
and secures home networks by detecting 
and mitigating cyber threats.

• Satellite, Drones and High-Altitude 
Platforms (HAPs): AI optimises satellite 
communication, adjusts orbital paths, and 
mitigates interference. Devices in NTNs can 
autonomously manage their operations, 
adapting to environmental conditions such 
as weather or signal interference, for more 
reliable and efficient communication.

3.5 AI IN INDUSTRY APPLICATIONS

The growing need for real-time data processing, 
autonomous decision-making, and optimised 
network operations is creating a unique synergy 
between AI and the devices within the networks. 
AI is not only enabling smart devices but also 
empowering TN and NTN infrastructures to adapt, 
evolve, and deliver highly reliable connectivity on a 
global scale. 



Fig. 2: AI-enabled global connectivity across terrestrial and non-terrestrial networks.

AI’s transformative potential extends to enabling 
E2E applications across various industries: 

• Aviation: AI optimises flight paths, enhances 
safety with real-time air traffic monitoring, 
and ensures predictive maintenance for aircraft 
systems, reducing delays and improving 
operational efficiency.

• Maritime: AI supports autonomous navigation, 
real-time weather analysis, cargo optimisation, 
and predictive maintenance of critical systems, 
improving safety and efficiency in global 
shipping operations.

• Media and entertainment: AI revolutionises 
content delivery through adaptive streaming, 
personalised recommendations, and automated 
editing. It also enables real-time language 
translation and captioning for global audiences 
to enhance accessibility.

• Healthcare: AI facilitates remote diagnostics and 
real-time patient monitoring through wearables. 
It automates personalised treatment planning 
and employs predictive tools for early intervention, 
streamlining healthcare services and improving 
patient outcomes.

• Logistics and supply chain: AI optimises route 
planning, warehouse management, and inventory 
tracking. By leveraging predictive analytics, it 
enhances delivery performance and minimises 
disruptions, ensuring seamless supply chain 
operations.

• Energy and sustainability: AI plays a key role 
in optimising energy consumption, improving 
grid management, and supporting sustainable 
practices. AI systems can predict energy demand, 
optimise renewable energy usage, and enhance 
the efficiency of power plants. In addition, AI 
helps monitor environmental conditions, track 
emissions, and suggest energy-saving strategies, 
contributing to greener, more sustainable 
industrial operations.

Page 14



Page 15

• Enabling Open RAN collaboration: Open 
RAN standards in 3GPP foster multi-vendor 
AI solutions. Through Release 18, Open 
RAN interfaces now support real-time AI-
driven beamforming and RAN energy savings, 
facilitating innovation and cost efficiency 
across diverse ecosystems.

• Advancing federated learning: Releases 17 
and 18 introduced frameworks for federated 
learning, allowing collaborative training of AI 
models, while preserving data privacy. These 
methods enhance the development of robust 
AI systems tailored to dynamic network 
environments.

Release 19 of 3GPP is still in progress and 
focuses on advancing the capabilities of 5G and 
preparing for future technologies, including 6G. 
It is expected to build upon the innovations 
introduced in Release 17 and Release 18, with a 
focus on enhancing network efficiency, AI-driven 
operations, edge computing, and integrating NTNs.

The role of standardisation is crucial for the 
development, interoperability, and global adoption 
of technologies in telecommunications. In the 
rapidly evolving field of 5G, NTN, and AI-driven 
services, standardised protocols ensure seamless 
integration and compatibility across different 
devices, networks, and services. The 3GPP has 
been instrumental in standardisation by:

• Defining AI/ML use cases: Starting with 
Release 15, the 3GPP introduced Network 
Data Analytics Function (NWDAF), enabling 
advanced analytics for resource optimisation, 
anomaly detection, and enhanced mobility 
management. Release 16 expanded AI’s role 
to include network slice management and 
energy efficiency mechanisms, while Release 
17 incorporated AI-driven enhancements in 
QoS prediction and traffic steering, further 
supporting NTN integration.

• Standardising interfaces for AI integration: 
Unified frameworks for AI-enabled interfaces 
were solidified in Release 16, providing 
standardised communication protocols 
between network components and AI-driven 
functions. This ensures interoperability and 
accelerates the deployment of AI solutions 
across TNs and NTNs.

4. THE EVOLUTION OF AI IN 3GPP STANDARDISATION

Fig. 3: The evolution of AI in 3GPP standardisation – based on Ericsson’s view of the 5G Advanced and 6G timeline of 3GPP[29].
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The integration of AI-driven connectivity solutions 
in TN and NTN presents numerous opportunities 
to enhance network performance, optimise 
resource allocation, and drive innovation. However, 
it also introduces a range of challenges that 
must be addressed to ensure the responsible 
deployment of these technologies. These 
challenges span across technical, regulatory, 
security, and operational domains, with particular 
emphasis on ensuring that AI systems are fair, 
transparent and accountable. 

As AI becomes more integral to network 
management and service delivery, it is critical to 
address concerns around data privacy, security 
risks, and ensuring trustworthy, explainable, and 
ethical AI deployment. Tackling these challenges 
will be essential for building trust among 
stakeholders and promoting the widespread 
adoption of AI technologies in TN/NTN.

5.1 DATA PRIVACY AND SECURITY

AI models, especially those deployed in telecom 
networks, rely on large datasets for training to 
enable effective decision-making and optimisation. 
Nevertheless, collecting and processing such data 
raises significant privacy concerns, regulatory 
constraints, and cybersecurity risks. In the context 
of NTNs, which involve complex infrastructures 
such as satellites and UAS, these challenges 
are amplified. The distributed nature of NTN 
systems, which may involve multiple geographic 
locations and varying data sources, increases the 
risk of data breaches and unauthorised access. 
Additionally, maintaining compliance with regional 
data privacy laws (such as GDPR in Europe) 
becomes more complicated when data is spread 
across different jurisdictions.

To address these concerns, federated learning 
offers a promising solution, by enabling AI 
training without centralised data storage, 

preserving privacy and complying with regulations 
that restrict data sharing. The aggregation of 
model updates (rather than raw data) at a central 
server ensures that no private information is 
transferred, while still enabling collective learning.

Moreover, additional techniques such as 
homomorphic encryption[30] and differential 
privacy[31] can be integrated into the FL framework 
to further enhance data security. These methods 
allow computations to be performed on encrypted 
data, ensuring that sensitive information is never 
exposed during the training process.

5.2 AI-DRIVEN ATTACKS ON         
WIRELESS NETWORKS

AI can significantly enhance wireless network 
performance and security, but it also introduces 
new threats. Malicious actors can leverage AI to 
launch sophisticated attacks, such as intelligent 
jamming, spoofing, and eavesdropping, by learning 
from network data and adjusting their tactics in 
real time. AI-powered techniques, like Generative 
Adversarial Networks (GANs) and deep fakes, can 
generate fake signals or impersonate legitimate 
users, leading to data breaches or network 
disruptions. Additionally, AI can enable attackers 
to coordinate and synchronise their actions, while 
adapting and evolving their strategies in response 
to network security countermeasures, by utilising 
multi-agent systems, game theory, or genetic 
algorithms[32]. 

To mitigate these risks, AI-driven defence 
mechanisms can be used to detect and counteract 
attacks by identifying abnormal network patterns 
and using ML for real-time threat detection. 
Encryption and authentication systems enhanced 
with AI can prevent breaches, while anomaly 
detection tools utilising reinforcement learning can 
identify evolving attack strategies. 

5. CHALLENGES AND MITIGATIONS
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Additionally, deception techniques can mislead 
attackers, preventing successful exploitation. By 
leveraging AI for both defence and detection, 
network operators can strengthen their defences 
against AI-driven cyberattacks while improving 
overall security.

5.3 TRUSTWORTHY, EXPLAINABLE AND 
ETHICAL AI DEPLOYMENT

AI models often function as complex black boxes, 
making it challenging for network operators to 
interpret decisions, diagnose failures, or ensure 
compliance with regulations. Moreover, due 
to the vast amounts of data used for training, 
development processes must ensure that 
models learn only the intended patterns and 
behaviours without introducing unintended 
biases or inaccuracies. This is especially critical in 
telecommunication applications, where decisions 
made by AI can directly impact user experience, 
privacy, and system reliability.

It is also essential to have a clear and transparent 
understanding of how these models operate, 
which can be achieved through Explainable AI 
(XAI) techniques that provide insights into the 
decision-making process, enabling stakeholders 
to better trust the AI’s actions. Ultimately, 
maintaining trust in the overall system depends 
on ensuring that AI is both reliable and ethical, 
functioning as expected without introducing 
physical, financial, or ethical risks, and ensuring its 
decisions are aligned with societal values[33].

5.4 STANDARDISATION AND 
INTEROPERABILITY

Global standards are needed to ensure seamless 
integration, compatibility, and cooperation across 
multi-vendor ecosystems, fostering innovation and 
cost efficiency. Interoperability plays a crucial role 
in enabling AI-driven telecom networks to function 
across different infrastructures, devices, and 
service providers, ensuring consistent performance 
and scalability. In TN and NTN environments – 
where networks must operate across terrestrial, 
satellite, and airborne platforms – interoperability 
is essential for maintaining seamless connectivity 
and data exchange.

Governments, companies, and standards 
bodies worldwide are recognising the need 
for trustworthy and interoperable AI systems 
and are establishing regulations to address 
this. Examples of such initiatives are the 
European Union AI Act[34], which is the first-ever 
comprehensive legal framework on AI worldwide, 
aiming to foster trustworthy AI in Europe, 
and the UK Government’s white paper on AI 
regulation[35]. These regulatory efforts seek to 
create frameworks that enable safe and ethical 
AI deployment while ensuring consistency across 
different markets and regions.

Another initiative is AI for Good Global Summit[36], 
organised by the ITU in partnership with 38 
United Nations (UN) sister agencies and co-
convened with Switzerland, which focuses on 
identifying trustworthy AI applications that 
support the 17 UN Sustainable Development Goals 
(SDGs). Targeted for achievement by 2030, it aims 
to build skills, set standards, and advance AI 
governance for sustainable development.

Interoperability frameworks and open standards 
are vital for ensuring AI models, data formats, 
and operational protocols can seamlessly interact 
across different networks and vendors. Initiatives 
such as 3GPP’s AI/ML standardisation efforts and 
industry-driven projects like the O-RAN Alliance 
are crucial for promoting open, interoperable, and 
secure AI-powered telecom networks.
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As AI continues to evolve, its role in 
telecommunications networks is expected to grow 
exponentially. Future AI-driven networks will 
not only optimise performance but also enable 
self-learning, autonomous, and highly adaptive 
communication systems capable of handling 
the increasing complexity of next-generation 
connectivity.

6.1 HARDWARE SOLUTIONS 

The future of AI-driven networks relies not 
only on software advancements but also on 
innovative hardware solutions that enhance 
computational efficiency, speed, and energy 
consumption. Emerging technologies such as 
neuromorphic computing, quantum advancements, 
and AI-optimised chips are set to revolutionise 
AI processing in telecommunications, edge 
computing, and NTN systems.

• Neuromorphic computing: replicates brain-
like processing using Spiking Neural Networks 
(SNNs) and specialised chips for low-power, 
real-time AI inference, ideal for edge AI and 
low-latency TN and NTN applications. Key 
benefits include ultra-low power consumption 
for satellites and IoT, real-time adaptability to 
dynamic network conditions, and event-driven 
processing for efficient data transmission. 
Companies like Intel (Loihi), IBM (TrueNorth), 
and BrainChip (Akida) are advancing 
neuromorphic chips to enhance AI-driven 
decision-making at the network edge.

• Quantum computing has the potential 
to revolutionise AI in telecommunications 
by solving complex network optimisation 
problems exponentially faster. Unlike classical 
computers, which process data in binary, 
quantum computers leverage qubits to 
perform multiple calculations simultaneously 
through superposition and entanglement. 
This advancement enables faster network 
optimisation, allowing real-time traffic and 
resource management. Quantum cryptography, 
particularly Quantum Key Distribution (QKD), 
enhances security by making AI-driven 
networks resistant to cyber threats and 
eavesdropping. Additionally, quantum 
computing accelerates AI training by enabling 
federated learning models to process vast 
datasets in parallel, significantly reducing 
training times for AI models in 6G and beyond. 
While still in development, companies such as 
Google, IBM, and D-Wave are actively working 
on quantum AI applications, which could 
be integrated into future telecommunication 
infrastructures.

• Specialised Application-Specific Integrated 
Circuits (ASICs): ASICs designed for AI tasks 
enhance performance and energy efficiency 
across TN/NTN, reducing operational costs 
and improving sustainability. ASICs reduce 
operational costs and contribute to sustainable 
AI deployment in telecom networks, 
making them ideal for edge AI, real-time 
data processing, and autonomous network 
management in 6G and NTN ecosystems. In 
the context of AI, ASICs have already been 
deployed in several commercially available 
products, such as Google’s Tensor Processing 
Units (TPUs), specifically designed for AI and 
ML tasks, and Tesla’s Dojo chip, designed for 
deep learning in autonomous driving.

6. THE FUTURE OF AI IN NETWORKS 
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• CubeSats: small, cost-effective satellites 
ideal for AI-driven applications in NTN. By 
incorporating AI processors and algorithms, 
CubeSats can autonomously collect, process, 
and analyse data at the edge, enabling 
real-time decision-making and low-latency 
communication in remote or underserved 
areas. With AI-enhanced capabilities, 
CubeSats can improve resource allocation, 
monitor network health, and optimise 
traffic routing. This makes satellites a vital 
component of future AI-driven networks, 
especially in environments where terrestrial 
infrastructure is sparse or non-existent. 
Their integration with AI will enable them to 
support global connectivity, disaster recovery, 
and space-based communication, bringing 
new opportunities for AI at the edge. The 
survey conducted by N. Saeed et al.[37] 

describes all the potential future applications 
of Cubesats for satellite communications.

6.2 AI FOR THE CYBER-PHYSICAL WORLD

As AI continues to evolve, its role in the cyber-
physical world will be transformative, enabling 
seamless interaction between digital and physical 
systems. AI-driven models will bridge the gap 
between virtual simulations and real-world 
infrastructure, enhancing network efficiency, 
reliability, and security.

AI-driven digital twins will redefine network 
management by creating real-time, virtual replicas 
of physical network elements, including base 
stations, satellites, fibre-optic links, and IoT 
devices. These models will allow operators to 
analyse system behaviour, predict failures, and 
proactively optimise network performance.

Physics-aware AI will integrate wireless 
communication principles such as electromagnetic 
wave propagation, beamforming, and interference 
modelling to enhance signal transmission and 
spectrum efficiency. AI-driven physics models will 
be key to overcoming the challenges of Millimetre-
Wave (mmWave) and Terahertz (THz) frequencies, 
where precise beamforming and dynamic power 
adjustments are essential.

6.3 AI-NATIVE 6G

The future of telecommunication is set to be 
transformed by the convergence of AI and 6G, 
where AI will be deeply embedded into the 
core of network architecture. Unlike previous 
generations of mobile networks, 6G will be 
AI-native, meaning AI will not just be an add-
on but a fundamental part of its design from the 
very beginning. According to Nokia[38], 6G will not 
work without AI, as AI will drive system design, 
optimisation, and automation across RAN, cloud 
infrastructure, and network management. This 
integration will redefine how telecom networks 
are built, operated, and monetised, enabling 
unprecedented levels of efficiency, adaptability, 
and intelligence.

The European Space Agency (ESA) is already 
taking steps toward AI-driven 6G NTN with its 6G 
Satellite Precursor initiative[39]. This programme 
explores the role of AI in optimising satellite-
based 6G connectivity, ensuring seamless 
integration between terrestrial and non-terrestrial 
networks. AI-driven satellites will enhance 
coverage, reduce latency, and dynamically allocate 
resources based on demand, making AI-powered 
NTN essential for global 6G deployment. The 
initiative reflects the growing recognition that 
satellite networks will be a critical component of 
6G, particularly for remote and underserved areas 
where terrestrial infrastructure is limited.

As we move toward this AI-native era, 
collaboration between industry leaders, 
policymakers, and researchers will be essential 
to unlocking the full potential of AI in telecoms. 
The future of connectivity will not only be faster 
and more intelligent but also more inclusive 
and sustainable, bridging the digital divide and 
redefining how the world stays connected.
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7. CONCLUSION AND CALL TO ACTION

AI’s role extends beyond operational 
improvements; it also underpins 
the innovation required for future 
telecommunications advancements. By 
automating complex operations, enabling 
scalability, optimising resources, and 
enhancing reliability, AI ensures networks are 
equipped to meet the demands of emerging 
applications such as Augmented Reality (AR), 
Virtual Reality (VR), autonomous systems, and 
smart cities. The convergence of AI with 6G 
and beyond will drive transformative changes, 
bringing the vision of ubiquitous, intelligent, 
and sustainable connectivity closer to reality.

AI-driven terrestrial and non-terrestrial 
networks are set to transform global 
connectivity, aligning with ESA’s mission 
to foster innovation, sustainability, and 
inclusivity. However, alongside these 
advancements come significant challenges, 
including data privacy, security risks, ethical 
considerations, and interoperability concerns. 
This white paper serves as a call to action for 
stakeholders across the telecommunications 
ecosystem to drive research, establish best 
practices, and develop AI-native solutions 
that ensure secure, efficient, and sustainable 
connectivity for the future. ESA invites industry 
leaders, researchers, and policymakers to 
collaborate in shaping the next generation 
of networks that redefine connectivity for 
industry and society.
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