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EXECUTIVE SUMMARY

New generations of cars are making use of advanc-
es in the field of Artificial Intelligence (AI) to provide 
semi-autonomous and autonomous driving capabili-
ties, achieving a technological breakthrough that will 
strongly impact existing behaviours and practices. 
Beyond the undeniable benefits of autonomous driv-
ing for many aspects of our societies, the question of 
the safety and security of this technology, which by 
definition is intended to operate with limited human 
supervision, has emerged. The answers provided by 
regulatory bodies on these issues are likely to play 
an important role for the adoption of autonomous 
vehicles (AVs) in society. This is all the more impor-
tant given that machine learning (ML) techniques, at 
the core of the AI components developed to mimic 
human cognitive capabilities, have been proven to 
be highly vulnerable to a wide range of attacks that 
could compromise the proper functioning of autono-
mous vehicles, and pose serious threats to the safe-
ty of persons, both inside and outside of a vehicle. In 
this context, understanding the AI techniques used 
for autonomous driving and their vulnerabilities in 
the cybersecurity threat landscape is essential to al-
leviate the risks and ensure that benefits will not be 
counterbalanced by stronger safety risks. 

Cybersecurity of AVs is classically approached 
through the angle of the security of digital systems. 
This is all the more relevant as modern vehicles are 
fully controlled by electronic components, vulnera-
ble to physical and remote attacks exploiting clas-
sical cybersecurity vulnerabilities. With this report 
however, the objective is to raise awareness about 
the potential risks connected to the AI components 
in charge of replicating tasks previously addressed 
by human drivers, such as making sense of the en-
vironment or taking decisions on the behaviours of 
the vehicle. By their nature, those AI components do 
not obey the same rules as traditional software: ML 
techniques are indeed relying on implicit rules that 
are grounded on the statistical analysis of large col-
lections of data. While this enables automation to 
reach unprecedented cognitive capabilities, it opens 
at the same time new opportunities for malicious ac-
tors, who can exploit the high complexity of AI sys-
tems to their own advantage. Securing such systems 
requires to consider these AI specific issues on top of 
the traditional cybersecurity risks connected to digi-
tal systems, in the context of the full supply chain in-
volved in their development and of their integration 
with other automotive systems.

This report aims to provide insights on the cyber-
security challenges specifically connected to the 
uptake of AI techniques in autonomous vehicles. It 
starts by describing the dynamic policy context with 
which this initiative is aligned, at both the Europe-
an and international levels. Institutional and private 
actors have been very active to outline the high-lev-
el principles and standards that should govern the 
development of AV, either explicitly, with dedicated 
automotive guidelines, or through the definition of 
sets of practices driving the expansion of AI and cy-
bersecurity. In this respect, the European institutions 
have conducted various initiatives for developing 
trustworthy AI, where cybersecurity and intelligent 
transportation play a significant role.

Subsequently, this report delves into the technical 
aspects of AI in the automotive sector, with the aims 
to better comprehend the technological concerns of 
AI, as well as to get a sense of the level of integra-
tion of AI in AV. This includes an extended descrip-
tion of the areas in which AI plays a role, to ensure 
the proper implementation of cognitive capabilities 
inside automotive systems. Autonomous driving re-
quires addressing a host of smaller subtasks (recog-
nizing traffic signs or roads, detecting vehicles, esti-
mating their speed, planning the path of the vehicle, 
etc.), each of them trivially performed by humans, 
but requiring carefully engineered AI systems to au-
tomatically address them. AI software components 
in an AV do not form a monolithic system, but rather 
rely on a complex combination of large and varied 
collections of data, themselves obtained by several 
types of sensors, and a rich set of AI methodolo-
gies, based on scientific works from statistics, math-
ematics, computing, and robotics. Starting from the 
high-level functions, an extended description of the 
landscape combining AI techniques, sensors, data 
types, and cognitive tasks highlights the sheer abun-
dance of approaches and ideas that have made AV 
a reality. We claim that the understanding of these 
technical elements in the automotive context is es-
sential to put into perspective their cybersecurity im-
plications of these AI-based components. A mapping 
of automotive functions to AI techniques is provided 
to highlight the connections between automotive 
and scientific concepts, making direct links between 
automotive functionalities, intermediate subtasks, 
and ML techniques.



7

Cybersecurity challenges in the uptake of artificial intelligence in autonomous driving

After this technical presentation, a state-of-the-art 
literature survey on security of AI in the automotive 
context discusses the main concepts behind the cy-
bersecurity of AI for autonomous cars. Security of 
AI in general lies outside the scope of this report, 
and the interested reader is referred to the recent-
ly published ENISA AI Threat Landscape [1] to get 
the full picture on this matter. Instead, a focus is 
specifically made on adversarial machine learning 
that regroups a set of techniques that are current-
ly the main approaches susceptible to compromise 
AI components of AVs. They allow a malicious ac-
tor to design specific attacks that could deceive  AI 
systems while staying undetectable by human su-
pervisors. Concretely, carefully crafted patterns can 
be disseminated in the environment to  alter the 
decision-making process and induce unexpected 
behaviour of the vehicle. Typical examples include 
adding paint on the road to misguide the navigation, 
or stickers on a stop sign to prevent its recognition. 
Despite the complexity to undertake these kinds of 
attacks, and in particular to make them undetectable 
by human eyes, the dire consequences in terms of 
safety should encourage car manufacturers to im-
plement defence mechanisms to mitigate these type 
of AI risks. The description of these attacks, which 
may not necessarily require access to the internal 
system of the vehicle, is accompanied by real-world 
cases involving autonomous or semi-autonomous 
cars fooled by attackers. This is subsequently illus-
trated, both theoretically and experimentally, by re-
alistic attack scenarios against the AI components of 
vehicles, extending the discussion to other types of 
vulnerabilities of AI.

In conclusion of this report, a set of challenges and 
recommendations is provided to improve AI security 
in AVs and mitigate potential threats and risks. This is 
motivated by the importance of relying on the pillars 
that have been at the core of cybersecurity meth-
odologies developed along the years for traditional 
software, while at the same time taking into account 
the particularities of AI systems. In light of the con-
nections between AI and AVs brought forward in this 
report and their consequences in terms of security, 
the following recommendations are put forward.

Systematic security validation of AI models 
and data

Data and AI models play an important role in the 
implementation of autonomous capabilities in AVs. 
These components are dynamic in nature and can 
change their behaviour overtime as they learn from 
new data, are updated by manufacturers, or encoun-
ter unexpected or intentionally manipulated data. 

This requires that the security and robustness as-
sessments of AI components do not just take place 
at a given point in time during their development, 
but instead are systematically performed through-
out their lifecycle.

This systematic validation of both AI models and 
data is essential to ensure the right behaviour of the 
vehicle when faced with either unexpected situations 
or malicious actions such as attacks based on the 
alteration of inputs, including poisoning and evasion 
attacks. This implies developing and maintaining 
strict continuous processes to make sure that data 
that are used at the development and production 
stages have not been altered with a malicious intent, 
and that models do not contain vulnerabilities that 
could be exploited. It also means that links between 
industrial actors and research centres have to be re-
inforced to address the challenges associated with 
the implementation of this systematic validation.

AI supply chain security in the automotive 
industry

The security of the software and hardware supply 
chain is of paramount importance in cybersecurity. 
The increased uptake of AI technologies has further 
amplified this issue with the addition of complex and 
opaque ML algorithms, dedicated AI modules and 
third party pre-trained models that now become part 
of the supply chain. The particularities of the supply 
chains in the automotive sector, with large and com-
plex dependencies on both hardware and software, 
add to this complexity. 

Proper AI security policies should be established 
across the supply chain, including third-party pro-
viders, ensuring a proper governance and develop-
ing an AI security culture across the supply chain. 
Continuous risk assessment processes supported by 
threat intelligence could enable the relevant actors 
to promptly identify and monitor potential AI risks 
and emerging threats related to the update of AI in 
autonomous driving. Compliance with specific reg-
ulations in the automotive sector (such as UNECE 
R155 [2]) could be considered to ensure the security 
of the supply chain.

Cybersecurity processes and controls of AI 
techniques in autonomous driving

The uptake of AI in autonomous driving brings about 
important cybersecurity concerns. The increased dig-
italization of vehicles and the inclusion of AI func-
tionalities result in a larger attack surface and might 
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significantly increase the incentives for attackers to 
target AVs. Cyberattacks against AVs do not only 
concern the particularities related to AI, but also in-
clude the security of the underlying digital infrastruc-
ture and related digital systems. It is thus crucial to 
evolve existing security processes and practices to 
consider this increased uptake of AI technologies 
and digitalization in vehicles, particularly in the con-
text of autonomous driving. 

The automotive industry should embrace a security 
by design approach for the development and deploy-
ment of AI functionalities. This could include the us-
age of standardised approaches and homogeneous 
interoperable AI solutions for automotive systems. 
It is important to promote a culture of cybersecu-
rity (particularly on AI enabled vehicles) across the 
automotive ecosystem, developing best practices, 
promoting R&D and innovation and progressively in-
tegrating cybersecurity controls and assessments in 
the current industry processes connected to the life-
cycle of autonomous driving AI products and services. 

Increase preparedness and incident response 
capabilities

The current cybersecurity landscape connected to 
the uptake of AI in AVs is limited to theoretical anal-
ysis and experimental use case studies carried out in 
laboratories and controlled environments. However, 
the expected increase in the deployment of higher 
levels of automation in road vehicles could quickly 
change this picture. 

It is important that the automotive sector increas-
es its level of preparedness and reinforces its inci-
dent response capabilities to handle emerging cy-
bersecurity issues connected to AI. This includes the 
establishment of cybersecurity incident handling 
and response plans based on standards, including 
vulnerability management processes and patch de-
ployment strategies. Cyber exercises in the form of 
simulations can also be of help to better understand 
potential impacts of newly discovered vulnerabilities, 
raise awareness in the organisations, train the sever-
al actors, and evaluate existing plans and procedures.

Increase capacity and expertise on AI 
cybersecurity for automotive systems

The digital transformation experienced by the auto-
motive sector in the last decade with the growth of 
the adoption of digital components in vehicles has 
driven the industry to increasingly face cybersecurity 
challenges. The uptake of AI as an enabler for auton-

omous driving vehicles will further amplify this trend 
placing cybersecurity as one of the critical require-
ments to ensure safety and promote trust.

In this respect, the lack of sufficient security knowl-
edge and expertise among developers and system 
designers on AI cybersecurity is a major barrier that 
hampers the integration of security in the automo-
tive sector. The proper application of the security by 
design principle requires that all actors involved in 
the lifecycle of the product are sufficiently proficient 
on cybersecurity and work systematically together 
towards the common goal of building a secure prod-
uct. AI cybersecurity cannot just be an afterthought 
where security controls are implemented as add-ons 
and defence strategies are of reactive nature.

Particularly in the automotive sector, cybersecurity 
is a multidisciplinary endeavour. This is especial-
ly true for AI systems that are usually designed by 
computer scientists and further implemented and 
integrated by engineers. AI systems should be de-
signed, implemented and deployed by teams where 
the automotive domain expert, the ML expert and 
the cybersecurity expert collaborate.
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1. INTRODUCTION

Advances in Artificial Intelligence (AI) have opened 
a whole new realm of opportunities in many areas 
of our connected digital society. The possibility to au-
tomate large parts of our daily activities, considered 
until now as out of the reach of computing machines, 
offers new perspectives to address the many chal-
lenges humans are facing. In the transportation sec-
tor, AI is playing a key role in the development of new 
generations of cars that will provide autonomous and 
semi-autonomous driving services to passengers and 
enable high levels of automation, with tangible ben-
efits in terms of road mortality, traffic congestion, or 
mobility opportunities. 

In this respect, AI is utilised as a means to enhance 
service provisioning and offer more secure and safe 
driving conditions. However, at the same time, there 
are security implications of AI to the entire eco-
system of digital products and services. AI enables 
new use-cases where cyber impacts cross the bar-
rier between the digital and physical world and can 

translate into serious safety problems. The automo-
tive sector constitutes a high-risk domain, which is 
directly affected by the risks associated with these 
cybersecurity issues. In fact, automotive security is 
tightly linked to safety: cyberattacks can cause safety 
problems and harms in the physical world, potentially 
at large scale. All of this constitutes a reason for fo-
cusing efforts on risk alleviation in this sector.

This report aims to provide insights on these cyber-
security challenges, specifically connected to the up-
take of AI techniques in autonomous driving vehicles.

1.1 Definitions
The SAE J3016 standard [3] defines six levels of driv-
ing automation for on-road vehicles, ranging from 
level 0 with no driving automation at all to level 5 
with full driving automation and no need for a driver, 
as shown in Figure 1. 

Figure 1. Vehicles automation levels as defined in SAE J3016.
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This study focuses on semi-autonomous and au-
tonomous cars, which are also referred to as Auto-
mated Driving System-Dedicated Vehicle (ADS-DV) 
in SAE J3016 standard, defined as follows:

• Semi-autonomous cars (level 4 of automa-
tion): refers to highly automated cars that are 
equipped with a multitude of sensors in order to be 
able to autonomously (i.e. without any human driv-
er intervention) perform all driving functions under 
certain conditions (e.g. on a given type of roads).

• Autonomous cars (level 5 of automation): 
refers to fully automated cars that are equipped 
with a multitude of sensors in order to be able to 
autonomously perform all driving functions under 
all conditions (i.e. at any time and on any road). 
This type of car may not even include a steering 
wheel or accelerator/brake pedals.

Various national and international bodies have 
adopted the definition of the SAE standard for au-
tonomous cars, among them the Australian National 
Transport Commission [4], the Government of Japan 
[5], the Government of Singapore [6], the UK’s De-
partment for Transport (DfT) [7], the US National 
Highway Traffic Safety Administration (NHTSA) [8], 
the Government of Ontario, Canada [9] and the Eu-
ropean Road Transport Research Advisory Council 
(ERTRAC) [10]. 

Besides automating driving, another innovation 
trend in the car industry consists in providing unprec-
edented levels of connectivity. Connectivity supports 
the communication of vehicles with all sorts of infra-
structures and devices, and may serve (i) increasing 
functionalities and services for drivers, (ii) integrat-
ing information needed to enact autonomous driving 
and (iii) enable new driving patterns such as vehicle 
platooning [11]. Commonly available connection mo-
dalities comprise:

• Vehicle-to-Network (V2N) connects the vehicle 
to Internet and/or the cloud, to enable exchange 
real-time information about traffic, routes, and 
road situation. This connection is at the base of 
infotainment systems and an option available in 
most of the current vehicles.

• Vehicle-to-Vehicle (V2V) connects vehicles to 
exchange information comprising their respec-
tive location, direction, speed, braking status, and 
steering wheel position. Since V2V technology en-
ables sensor outreach of neighbour cars, it may be 
an enabler of autonomous driving integrating the 
on-board sensing of the environment. 

• Vehicle-to-Infrastructure (V2I) and Infra-
structure-to-Vehicle (I2V) technologies allow 

vehicles to communicate with road infrastructure 
and vice versa to support variety of traffic man-
agement applications and services.

• Vehicle-to-Person (V2P) technology enables 
vehicle’s connection to smartphones and weara-
ble devices, so that pedestrians or any other vul-
nerable road user (e.g. cyclists, e-scooter users, 
etc.) can share data with cars. This may be used 
to share location information and coordinate the 
operation of the vehicle with pedestrian’s behav-
iour (e.g. alerting drivers if, for instance, they need 
more time to cross the road

• Vehicle-to-Device (V2D) and Vehicle-to- 
Everything (V2X) technologies enable the connec-
tion of vehicles with any surrounded device, object, 
and infrastructure connected to the Internet. 

The combination of the two trends (toward connect-
ed and AVs) will eventually result in the full develop-
ment of Cooperative, connected and automated mo-
bility (CCAM) [12], in which Connected Autonomous 
Vehicles (CAVs) are expected to improve significantly 
road safety, traffic efficiency and comfort of driving, 
by helping the driver to take the right decisions and 
adapt in real-time to the traffic situation.

Modern vehicles currently available on the market 
already include Advanced Driver Assistance Systems 
(ADAS) as safety features that assist drivers in spe-
cific circumstances, such as keeping the car from 
drifting out of the lane or helping the driver stop in 
time to avoid a crash or reduce its severity. Advanced 
functionalities required in such autonomous and con-
nected systems heavily rely on methods for data ac-
quisition, communication, processing and understand-
ing, which empower the vehicle to sense the inner and 
outer environment and make decisions. AI and its 
subfield of Machine Learning (ML) are the core ena-
bling technologies of such functionalities. It is easy to 
foresee that the uptake of these new technologies will 
introduce new vulnerabilities. Outlining the range of 
vulnerabilities that vehicles featuring these systems 
may exhibit is an important goal of this report. To this 
end, an overview of the functional architecture un-
derlying CCAMs and ADAS may prove useful to frame 
how and where AI and ML get involved.

AVs have been under development for a relatively 
long time, and numerous approaches and proofs-of-
concept have been developed to provide solutions to 
the tasks discussed above, however, without reaching 
a sufficient level of maturity to be implemented as an 
end-user product. The rise of AI and ML techniques 
based on Deep Learning (DL) has been a game-chang-
er, with major breakthroughs in computer vision and 
behaviour modelling that galvanized the industry. 
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Many companies have developed prototypes that are 
based on these techniques, and cars with high level of 
autonomy are already commercialized.

Today, AI and ML are the keystone of highly-ac-
cessorised smart cars and will be the key for the 
next-generation cars, whose driving experience will 
be more and more ameliorated with user services 
and automated assistance towards more secure and 
safe driving. Not by chance, many car manufactures 
are currently running media campaigns advertising 
the use of AI in their products [13]. There is a grow-
ing tendency in the automotive sector towards pri-
oritizing security in both hardware and software, of-
ten in collaboration with academic research centres. 
The ultimate goal of this escalating use of AI is fully 
autonomous driving on automation level 5 and the 
delivery of AVs for both public and private usage. 

1.2 Scope
The scope of this report focuses on the analysis of 
the cybersecurity challenges specifically connected 
to the uptake of AI techniques in autonomous driv-
ing, considering the AI specific cybersecurity issues 
that surface on top of the more general cyber risks 
connected to digital systems. 

Cybersecurity of digital systems in general, including 
those supporting AI, lies outside the scope of this 
work. The interested reader is referred to related 
work on the topic of securing AI, and in particular 
the recently published ENISA AI Threat Landscape 
[1]. The threat landscape serves as a baseline for 
the identification of relevant assets and threats in 
the AI ecosystem and was developed collaboratively 
with the ENISA ad hoc Working Group on Artificial 
Intelligence Security [14], in which JRC is actively 
participating. 

• The main contributions of this report are summa-
rized below:

• State-of-the-art literature survey on AI in the con-
text of AVs.

• Mapping of AVs’ functions to their respective AI 
techniques.

• Analysis of cybersecurity vulnerabilities of AI in 
the context of autonomous driving.

• Presentation and illustration (theoretical and ex-
perimental) of possible attack scenarios against 
the AI components of vehicles.

• Presentation of challenges and corresponding rec-
ommendations to enhance security of AI in auton-
omous driving.

1.3 Target audience
This study focuses on the cybersecurity of AI com-
ponents and systems for AVs. A set of challenges 
and recommendations is also provided to improve AI 
security in this field and mitigate potential threats 
and risks. Hence, the target audience of this re-
port comprises the following profiles: 

• Policy makers will be informed about the AI par-
ticularities in autonomous driving in order to es-
tablish proper AI security policies across the auto-
motive supply chain.

• Regulatory bodies will better understand the AI 
security needs in the automotive industry in order 
to invest on efforts for the development of cyber-
security regulations incorporating the AI special 
characteristics.

• Standardisation bodies will be informed about 
the AI particularities in autonomous driving in 
order to strive for standardised AI components/
solutions and standards that incorporate AI in AVs 
aiming to ensure properly secure vehicles.

• National authorities will be further informed 
about the AI cybersecurity in autonomous driving 
in order to agree on cybersecurity policies that cap-
ture the particularities of AI in automotive systems.

• Original Equipment Manufacturers (OEMs) 
will better understand the AI particularities as 
a first step to incorporate secure AI components 
while they design new cars and handle the assem-
bly of the various car components.

• Tier 1 and Tier 2 car components suppliers 
will better understand the special characteristics 
of AI and the need for secure AI solutions in au-
tomotive industry, in order to provide car compo-
nents that incorporate secure AI solutions.

• AI developers will be informed about the special 
needs of security in automotive industry in order 
to develop AI components and systems having se-
curity in mind.

1.4 EU and international policy 
context
Various attacks in the automotive context [15]–[20], 
either against AI or not, which were publicly reported 
over the last three years, led to a relatively quick 
awareness of policy makers, regulatory bodies and 
the automotive industry for the security needs and 
the development of several cybersecurity regula-
tions and initiatives [21], aiming to ensure properly 
secure vehicles, as presented below.
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At the European level:

• Early 2014, the European Commission's Directo-
rate-General for Mobility and Transport (DG MOVE) 
set up a Cooperative Intelligent Transport Systems 
(C-ITS) deployment platform. This latter was con-
ceived as a cooperative framework including na-
tional authorities, stakeholders and the European 
Commission, with the objective to identify and 
agree on how to ensure interoperability of C-ITS 
across borders and along the whole value chain, 
as well as to identify the most likely and suitable 
deployment scenario(s). 

• In 2016, the European Commission adopted a Euro-
pean Strategy on Cooperative Intelligent Transport 
Systems, a milestone initiative towards cooperative, 
connected and automated mobility [22]. The objec-
tive of the C-ITS Strategy is to facilitate the conver-
gence of investments and regulatory frameworks 
across the EU, in order to see deployment of mature 
C-ITS services in 2019 and beyond [23].

• In 2016, the Member States and the European 
Commission launched the C-Roads Platform to 
link C-ITS deployment activities, jointly develop 
and share technical specifications and to verify 
interoperability through cross-site testing. Initially 
created for C-ITS deployment initiatives co-funded 
by the EU, C-Roads is open to all deployment activ-
ities for interoperability testing.

• In 2017, the European Commission’s Directo-
rate-General for Internal Market, Industry, Entrepre-
neurship and Small and Medium-sized Enterprises 
(SMEs) (DG GROW) launched an initiative on safety 
regulations with the aim to contribute to a further 
decrease of the number of road fatalities and inju-
ries considering amendments to the General Safety 
Regulation and the Pedestrian Safety Regulation. 

• In 2018, the European Commission published the 
EU Strategy for mobility of the future [24]. This 
strategy sets out a specific action to implement 
a pilot on common EU-wide cybersecurity infra-
structures and processes that are needed for se-
cure and trustful communication between vehicles 
and infrastructure for road safety and traffic man-
agement. Since 2018 the European Commission 
is implementing the EU C-ITS Security Credential 
Management System (EU CCMS) based on the Eu-
ropean C-ITS Security Policy (SP) and C-ITS Certif-
icate Policy (CP) published on the website of the 
C-ITS Point of Contact (CPOC) [25].  

• In 2019, the European Commission has set up 
a Commission Expert group on cooperative, con-
nected, automated and autonomous mobility, 
named “CCAM” [26], [27], to provide advice and 
support to the Commission in the field of testing 

and pre-deployment activities for CCAM. In 2020, 
to successfully implement the pilot on common 
EU-wide cybersecurity infrastructures and process-
es, a sub-group on C-ITS under the Commission 
Expert Group on Intelligent Transport Systems [12] 
was set up. The sub-group's task shall be to assist 
the Commission in working on the implementation 
of the aforementioned pilot and to foster exchange 
of experience and good practice in the field.

• In September 2020, the European Commission 
published a report by an independent group of 
experts on Ethics of Connected and Automated 
Vehicles [28]. The report includes 20 recommen-
dations covering dilemma situations, the creation 
of a culture of responsibility, and the promotion 
of data, algorithm and AI literacy through public 
participation.

• The protection of road users’ privacy and person-
al information is also addressed by the recent EU 
General Data Protection Regulation (GDPR) [29], 
which officially went into effect in May 2018.

• The Network and Information Security directive 
(NIS) [30] also addresses AVs’ cybersecurity issues 
as it intends to provide generic security measures 
in order to enhance cybersecurity across EU.

International Context

• Several international cybersecurity standards and 
recommendation documents are also under devel-
opment. In particular, the United Nations Economic 
Commission for Europe (UNECE) has issued a reg-
ulation on cybersecurity [2] which defines a set 
of requirements that shall be fulfilled by vehicle 
manufacturers, suppliers and service providers, 
covering the entire vehicle lifecycle (i.e. from the 
vehicle development to its decommissioning). 

• Transport Canada released in 2020 “Canada’s Ve-
hicle Cyber Security Guidance” [31], which provides 
guiding principles to help ensure vehicles are cy-
ber-safe. This Cyber Guidance aims to support in-
dustry stakeholders by providing technology neutral 
and non-prescriptive guiding principles to strength-
en cyber security throughout the vehicle lifecycle.

• The European OEMs published a set of cyberse-
curity principles, through the ACEA Principles of 
Automobile Cybersecurity [32], which are already 
implemented by OEM companies.

• The National Highway Traffic Safety Administra-
tion (NHTSA) from the U.S. government issued in 
late 2016 a document introducing several cyber-
security best practices for smart cars [33].

• The Singapore Standards Council released in 2019 
a set of guidelines for the deployment of AVs 
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called Technical Reference 68 [6], whose Part 3 is 
related to define cybersecurity principles and an 
assessment framework.

• China’s National Development and Reform Corpora-
tion (NDRC) updated in February 2020 its “Strategy 
for Development of Intelligent Vehicles” [34], which 
establishes five key missions, including the estab-
lishment of a “comprehensive cybersecurity system”.

• The US Automotive Information Sharing and Anal-
ysis Center (Auto-ISAC) has been maintaining since 
2016 a series of Automotive Cybersecurity Best 
Practices [35], which provide guidance on the imple-
mentation of automotive cybersecurity principles.

Standards

• The British Standards Institution (BSI) Group pub-
lished in December 2018 two Publicly Available 
Specifications (PAS), namely PAS 1885 [36] and 
PAS 11281 [37]. The former, which is entitled “The 
fundamental principles of automotive cyber secu-
rity”, provides high-level guidance to provide and 
maintain cybersecurity. As regards to PAS 11281, 
entitled “Connected automotive ecosystems – Im-
pact of security on safety – Code of practice”, it 
provides recommendations for managing security 
risks in a connected automotive ecosystem.

• The European Telecommunications Standards In-
stitute (ETSI) has been developing a set of techni-
cal specifications [38]–[41] to  define an Intelligent 
Transport System (ITS) security architecture along 
with services specification to ensure information 
confidentiality and prevent unauthorized access to 
ITS services. They also address the trust and pri-
vacy management for ITS communications. These 
standards are integral foundation of the European 
C-ITS Certificate and Security policies [42], which 
are the governing policy documents enforcing 
some of the ETSI standards as baseline for inter-
operable and secure deployment of C-ITS in the EU.

• The standard of Society of Automotive Engineers 
SAE J3061 [43], officially published in January 
2016, is considered as the first standard address-
ing automotive cybersecurity. It provides a set of 
high-level cybersecurity principles and guidance 
for cyber-physical vehicle systems.

• The International Organization for Standardization 
(ISO) and SAE collaborated to supersede the SAE 
J3061 recommended practice and proposed the 
ISO/SAE 21434 [44]. This standard focuses on au-
tomotive cybersecurity engineering by specifying 
requirements and providing recommendations for 
cybersecurity risk management for cars (includ-
ing their components, software and interfaces) all 
along their entire lifecycle. Finally, SAE J3101 [45] 

defines common requirements for security to be 
implemented in hardware for ground vehicles.

In 2019, ENISA performed, with the involvement of 
the JRC, a study on “Good practices for security of 
smart cars” focused on semi-autonomous and au-
tonomous cars [46]. Moreover, in 2016, ENISA has 
performed a study on smart cars security issues, 
which resulted in a document entitled “Cyber Secu-
rity and Resilience of smart cars” [47]. In 2020, JRC 
published a report on the future of road transport 
[234]. In the same year, ENISA established the Con-
nected and Automated Mobility Security (CAMSec) 
experts Group, to address the cybersecurity threats, 
challenges and solutions of Intelligent Transport 
Systems (ITS) and CAM Transport. The members of 
CAMSec are vehicle manufacturers with focus on cy-
bersecurity, suppliers and developers of embedded 
hardware/software for smart cars, associations and 
non-profit organisations involved in vehicle security, 
road authorities and academia, as well as standard-
isation bodies and policy makers. In previous years, 
ENISA has also established the Cars and Roads 
SECurity (CaRSEC) working group which addresses 
smart cars cybersecurity threats, challenges and 
solutions to protect road users’ safety. JRC contrib-
utes to these security expert groups.

In parallel, the use of AI techniques for decision-mak-
ing systems in high-risk domains [48], including au-
tonomous driving, has led to a growing awareness 
of the shortcomings of current AI systems and has 
raised concerns in society about the compliance of AI 
systems with respect to a certain number of require-
ments, including explainability, fairness, reliability or 
transparency. These recent years, many proposals 
have been published by public and private actors to 
establish principles which AI systems should follow 
to ensure they will respect fundamental rights, and 
act in a safe and secure manner. The European Com-
mission is particularly active on this topic, with the 
establishment of multiple initiatives to ensure trust-
worthy AI [49] at the service of the citizens.
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2. AI TECHNIQUES IN AUTOMOTIVE 
FUNCTIONS

2.1 AI in autonomous vehicles
The last decade has seen an increase of efforts to-
wards the development of AVs. An AV is a driving 
system that observes and understands its environ-
ment, makes decisions to safely, smoothly reach 
a desired location, and takes actions based on these 
decisions to control the vehicle. A key enabler of this 
race towards fully AVs are the recent advances in AI, 
and in particular in ML. Designing an AV is a chal-
lenging problem that requires tackling a wide range 
of environmental conditions (lightning, weather, etc.) 
and multiple complex tasks such as: 

• Road following

• Obstacle avoidance 

• Abiding with the legislation

• Smooth driving style

• Manoeuvre coordination with other elements of 
the ecosystem (e.g. vehicles, scooters, bikes, pe-
destrians, etc.) 

• Control of the commands of the vehicle 

Usually, autonomous driving is described as a se-
quential perception-planning-control pipeline, each 
of the stages being designed to solve one specific 

group of tasks [50]. The pipeline considers input data, 
generally from sensors, and returns commands to 
the actuators of the vehicle. The main components 
of a driving-assistant as well as of an AV are broad-
ly grouped into hardware and software components. 
The hardware component includes sensors, V2X fa-
cilities, and actuators for control. The software part 
comprises methods to implement the vehicle per-
ception, planning, decision and control capability. 
Figure 3 displays typical elements of this pipeline. 
They are implemented by decomposing each prob-
lem into smaller tasks, and developing independent 
models, usually using ML, for each of these tasks.

This chapter is structured as follows: First, a brief 
introduction to the main high-level automotive 
functions where AI plays an important role is giv-
en, as well as a presentation of the main hard-
ware sensors that can be found on vehicles, and 
that generate the data that are processed by AI 
software components. After these two sections, 
a description of the main AI techniques common-
ly used is given, followed by a discussion on how 
these techniques are leveraged to implement the 
high-level functions in AVs. Finally, a summary of 
the chapter is presented in the form of three tables, 
highlighting the links between functions, hardware 
and software components, and techniques.

Figure 2. Typical elements of autonomous driving systems. Inputs from the environment are obtained from 
the sensors of the vehicle or external mapping information. They are used to perceive and understand the 
environment, plan the trajectory of the vehicle, and act on the vehicle’s commands.
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2.1.1 High-level automotive functions

Currently, fully autonomous driving solutions are be-
ing mostly experimented with prototypes. Nonethe-
less, vehicles with levels of automation up to level 
3 are already on the road, with driving assistance 
functionalities relying on AI and ML. Technology-en-
hanced functionalities featured by commercialised 
vehicles that leverage the use of AI and ML are, for 
instance, braking assistance, smart parking, or vocal 
interactions with the infotainment system. 

Features of AVs can be decomposed into several 
high-level automotive functions that are typically 
used by car manufacturers to advertise the auton-
omous capabilities of their products. As of today, 
the technical specifications of such functions are not 
uniformly defined and vary between manufacturers. 
In the following, we provide a non-exhaustive list of 
the most common automotive functions that are 
deemed as essential to achieve autonomous driv-
ing [10]. It is worth noting that most functions have 
been primarily designed to assist drivers rather than 
replace them (in vehicles with a level of autonomy 
from 1 to 3), by providing warnings, or taking con-
trol of the vehicles in limited situations. With fully 
developed AVs, these functions are part of the driv-
ing process and, essentially, contribute to replacing 
the driver1. At the end of this chapter, the following 
functions are considered and are mapped to specific 
AI tasks:

• Adaptive cruise control (ACC) consists in ad-
justing the speed of the vehicle in order to main-
tain an optimal distance from vehicles ahead. 
ACC estimates the distance between vehicles and 
accelerate or decelerate to preserve the right dis-
tance [51].

• Automatic Parking (or parking assistance) sys-
tems consist in moving the vehicle from a traffic 
lane into a car park. This includes taking into ac-
count the markings on the road, the surroundings 
vehicles, and the space available, and generate 
a sequence of commands to perform the manoeu-
vre [52].

• Automotive navigation consists in finding di-
rections to reach the desired destination, using 
position data provided by GNSS devices and the 
position of the vehicle in the perceived environ-
ment [53].

1 To that end, we do not consider these functions as warning systems, 
nor did we include functions that are necessarily acting on the behaviour 
of the driver (such as driver drowsiness detection). Likewise, functions 
that increase safety but are not directly linked to cognitive capabilities, 
such as anti-lock braking system (ABS) or tire pressure monitoring, are not 
mentioned.

• Blind spot / cross traffic / lane change assis-
tance consists in the detection of vehicles and pe-
destrians located on the side, behind and in front 
of the vehicle, e.g. when the vehicle turns in an 
intersection or when it changes lanes. Detection is 
usually performed using sensors located in differ-
ent points of the car [54], [55].

• Collision avoidance (or forward collision 
warning) systems, consist in detecting potential 
forward collisions, and monitoring the speed to 
avoid them. These systems typically estimate the 
location and the speed of forward vehicles, pedes-
trians, or objects blocking a road, and react proac-
tively to situations where a collision might happen.

• Automated lane keeping systems (ALKS) 
consist in keeping the vehicle centred in its traffic 
lane, through steering. This includes the detection 
of lane markings, the estimation of the trajectory 
of the lane in possible challenging conditions, and 
the generation of actions to steer the vehicle [56].

• Traffic sign recognition consists in recognizing 
the traffic signs put on the road and more gener-
ally all traffic markings giving driving instructions, 
such as traffic lights, road markings or signs. This 
implies to detect from camera sensors various 
indicators based on shape, colours, symbols, and 
texts [57].

• Environmental sound detection: consists in 
the detection and interpretation of environmental 
sounds that are relevant in a driving context, such 
as horn honking or sirens. This requires performing 
sound event detection in noisy situations.

In what follows, we first analyse the standard blocks 
of hardware and sensor components. We then give 
a brief overview over the most important AI tech-
niques and their software realization used for de-
signing AVs. The chapter concludes by mapping 
automotive functions to AI functions in order to fa-
cilitate the identification of relevant vulnerabilities 
and cybersecurity threats in autonomous driving. By 
narrowing down the AI techniques that are actually 
used in AVs, one scopes down the problem of iden-
tifying pertinent cybersecurity threats related to the 
use of AI in autonomous driving. 

2.2 Hardware and sensors
Humans drive cars by taking actions with hands and 
feet, based on decisions made considering the input 
received from our senses, mainly sight and hearing. 
Similarly, AVs rely on a variety of sensors to observe 
the surroundings and provide data to the AI systems 
of the vehicle, and on actuators to control the mo-
tion of the vehicle. The hardware components allow 
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the vehicle to sense the outside surroundings as well 
as the inside environment via specific sensors, to act 
via the actuators that regulate the car movement, 
and to communicate with other agents/devices via 
the V2X technology. 

Sensors, as the primary source of information for AI 
systems, are a critical element of AVs. All sensors 
can be broadly classified in three distinct groups [58]:

• Exteroceptive sensors are those sensors that are 
designed to perceive the environment that sur-
rounds the vehicle. They are relatively new sen-
sors present in cars, and are the eyes and ears of 
the car. Cameras and Light Detection and Ranging 
system (LIDARs) are the main vectors of informa-
tion for driving purposes. Other sensors, such as 
Global Navigation Satellite Systems (GNSSs), Iner-
tial Measurement Unit (IMU), radars and ultrasonic 
sensors, are also used to probe the environment, 
but tend to be limited to specific tasks (e.g. close 
detections, sound listening) or to add redundancy, 
increasing the reliability of results in the case of 
malfunction of a sensor.

• Proprioceptive sensors, on the other hand, are 
those that take measurements within the vehicle 
itself. They have been present in cars for decades, 
and are mostly used for control purposes. They in-

clude the set of analogue measurements that are 
encoded in digital form indicating values such as 
the engine’s revolution per minute (RPM), speed of 
the car (as measured by wheel’s rotation), direc-
tion of steering wheel, etc.

• Other sensors are those sending the information 
that the vehicle might receive from its digital com-
munication with other vehicles, V2V communica-
tions or V2I. They mainly concern the connected 
infrastructure of vehicles, and therefore they will 
not be discussed in the rest of the report.

The integration of sensors in vehicles varies ac-
cording to carmakers [59], [60] and depends on the 
software strategy chosen to process the streams of 
data. Very often, the inputs from multiple sensors 
are combined in a process called data fusion [61] to 
align all data streams before processing, as sensors 
are usually providing images from different natures 
(2D images, 3D point clouds, etc.) with different tem-
poral and spatial resolution.

Table 1 presents the main characteristics of the 
most common sensors found on autonomous cars, in 
addition to the LIDARs and cameras. The localization 
of these sensors on the vehicle and their main uses 
are illustrated in Figure 3.

Figure 5. Localization of the sensors on the vehicle and their main uses.
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Table 1. Comparison of AV sensors [58], [62].

Sensor Type Range Pros Cons

Exteroceptive 
(sensors that 
perceive 
environment)

LiDAR Up to 200 
meters

High precision
High accuracy
Wide Field of View

High cost
No colour information
Worsen aerodynamics (usually 
mounted on the roof)

Cameras Up to 100 
meters

Can see colours and textures
Low cost
High availability

Sensitive to low intensity light
Heavily affected by adverse 
weather conditions
Inaccurate range estimation

Radar 5 meters – 
200 meters

Robust to environmental conditions
Cheaper than LiDAR
Mature and readily available
Capable of determining relative 
motion of objects
Fast detection response

Noisy response for metallic 
objects
Not suitable for static objects
Poor lateral resolution

Sound 
microphone

Several 
hundreds of 
meters

Allows to hear environmental 
sounds.

Limited to audio signals.

Ultrasonic 
sensors

Up to 2 
meters

Robust to adverse weather 
conditions
Proven track of reliability
Most accurate sensor for close 
proximity
Inexpensive

Only suitable for very short 
range
Low resolution
Not suitable for high speeds
Heavily affected by changes 
in environmental conditions 
(temperature, humidity)

Proprioceptive 
(sensors that 
measure values 
within the system)

GNSS High accuracy.
Relatively inexpensive.
Widespread deployment
High-integrity and high-precision 
positioning capabilities

GNSS signals do not penetrate 
buildings such as multi-story car 
parks or inside tunnels,
Issues of reflectivity and 
satellite visibility in built-up 
urban areas.
Vulnerability to intentional 
and unintentional signal 
interferences.

IMU Within the 
vehicle

Needs no connection to or 
knowledge of the external world
6 degrees of freedom
Used in sensor fusion with other 
localization techniques
Inexpensive

Accuracy is dependent on 
calibration of accelerometer and 
three axis rate sensor.
Around 30cm accuracy, so 
needs to be used in combination 
with other sensors

Encoders 
(position, 
velocity, etc.)

Within the 
vehicle

Gives an accurate state of the 
vehicle Low cost.
Easy to install.

Limited accuracy.

2.2.1 LIDARs and cameras for computer 
vision
Cameras and LiDARs are the most widespread sen-
sors in autonomous cars, used to reproduce and en-
hance human vision. Digital video cameras are able 
to obtain a 2D representation of the 3-dimensional 
world. They provide a stream (video feed, as a se-
quence of images) of 2D maps of points (pixels) 
encoding colour information. Computer stereo vision 
techniques can be applied using multiple cameras 
and/or considering the different images in relation 
to the known movement of the vehicle. Examples of 
images from cameras are depicted in Figure 4.

A LiDAR illuminates the environments with lasers and 
collects the reflected light. The analysis of the sig-

nal received allows the generation of a depth map 
of the scene (see Figure 4). The depth map is further 
processed to recreate 3D maps of the environment 
[54] considering missing values in the acquired 3D 
data points, unexpected reflections due to wrong per-
ception of surfaces, and many other issues that may 
appear during the acquisition in real world scenarios.

Compared to LiDARs, cameras have the advantage 
that they distinguish colours, allowing the recognition 
of elements such as road signs, traffic lights, vehicle 
lights or text warnings. However, cameras also exhibit 
certain limitations compared to LiDAR: camera vision 
could be impaired by certain weather conditions such 
as rain, fog or sudden light changes such as when 
a vehicle gets out of a tunnel, while these conditions 
would affect to a lesser degree a LiDAR system.
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2.3 AI techniques
AI is generally defined as a collection of methods 
capable of rational and autonomous reasoning, ac-
tion or decision making, adaptation to complex envi-
ronments and/or to previously unseen circumstances 
[65]. AI was initially born as an academic discipline 
in the second half of the twentieth century and led 
since then to significant advances in the automa-
tion of some human level tasks, nonetheless with-
out much impact beyond academic circles for a long 
time [66]. It is deeply rooted in the fields of computer 
science, discrete mathematics and statistics, with an 
eventful history before gaining the popularity that 
makes it nowadays a key domain of the current 
digital revolution, thanks to the tremendous perfor-
mances achieved by modern systems. 

Typical problems related to AI require the develop-
ment of programs able to demonstrate some forms 
of reasoning, knowledge representation, planning, 
learning, and, more generally, cognitive capabilities. 

These competencies are usually considered as being 
natural to humans but are difficult to translate ex-
plicitly into algorithms. Nowadays, from a scientific 
perspective, AI is actually a heterogeneous field that 
regroups different subfields with diverse views on 
how to address these problems. 

Research on AVs was historically pioneered in the 
field of robotics, with several cars in the 1980s, and 
later on, able to drive autonomously in controlled 
environments. Nonetheless, the complexity of re-
al-world environments, and the necessary reliability 
that are required for such vehicles, has curbed their 
development until the significant recent progress 
made in ML. Since the last decade, tremendous mile-
stones have been reached in computer vision, natu-
ral language processing or game reasoning, pushing 
autonomous driving a leap forward. Although some 
functions are still solved using traditional methods, 
ML is increasingly used, relying on the huge quan-
tity of data that are collected by companies, with 
millions of kilometres travelled by autonomous cars 

Figure 4. Examples of images from an online set 
of Italian traffic signs [63] captured by a camera 
in three different environmental conditions (top) 
daytime (middle) fog (bottom) night-time.

Figure 5. Superposition of outputs from cameras 
(RGB images) and from LIDARs (range maps) 
(adapted from the Waymo Open Dataset [64]). For 
the range, the colour is coded from yellow (close) 
to purple (far). 
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under human supervision in real-world conditions or 
using simulated environments.

In the following, a short introduction to the relevant 
fields of ML for autonomous driving is provided, Be-
sides giving the technical basis that will support the 
discussion in the rest of the report, the goal of this 
section is also to highlight the diversity of techniques 
that are being employed for the different tasks, and 
the complexity of the full processing chain.

2.3.1 Machine learning: paradigms and 
methodologies
ML is the scientific field dedicated to the study of 
models that are able to improve automatically 
through experience [67]. This acquisition of experi-
ence can take different forms, and is usually achieved 
by extracting relevant patterns from large collection 
of data. Machine learning algorithms are therefore 
able to achieve high performance for a variety of 
complex tasks, hard to solve using conventional pro-
gramming techniques, without being explicitly in-
structed how to perform them. Prominent examples 
include recognizing faces in a picture, identifying 
objects in video streams, predicting the price of an 
asset quoted in a financial market, grouping users on 
an online platform based on their activities, recog-
nizing the emotion of a person, or teaching a robot 
to move in an unknown environment.

The central element of ML systems is the model that 
takes as inputs a set of pre-processed data, and re-
turns a prediction. This model is usually described as 
a mathematical function, with a collection of param-
eters that have a direct influence on the mapping 
between the inputs and the predictions. To adapt the 
model to the desired task, a training stage is per-
formed, and consists in running an algorithm that will 
update these parameters to fit a training dataset, i.e. 
a list of samples serving as examples to guide the 
model towards the expected function. The capability 
to perform well on data outside the training data, 
called the generalization, is a desirable property of 
the resulting model, which is often measured by 
metrics such as accuracy or mean squared deviation 
on previously unseen data. Training a model implies 
applying a host of ad-hoc procedures to increase 
the generalization capabilities of systems. Popular 
techniques include data augmentation that consists 
in artificially increasing the amount of training data 
by applying random transformations on the training 
data, and hyperparameter optimization search that 
tests various settings for the training procedure. The 
full pipeline includes several additional steps during 
training and testing that are not detailed here.

2.3.1.1 Paradigms of machine learning

Three different paradigms are commonly consid-
ered in ML:

• Supervised learning makes use of large and rep-
resentative set of labelled data to train the model. 
The underlying problem consists then to return the 
right label for the input data. Supervised learning 
includes classification, when the label is discrete 
(e.g. the make of a car), and regression, when the 
label is continuous (e.g. the speed of the car). The 
availability of labelled data is a limiting factor for 
supervised learning, as labelling can be, in some 
contexts, expensive and time-consuming.

• Unsupervised learning (or self-learning) con-
sists in extracting meaningful patterns from the 
data without labels by reducing the natural varia-
bility of the data, while preserving the similarity or 
absence of similarity between examples. Unsuper-
vised learning is used for various purposes, such 
as clustering the samples (e.g. grouping individuals 
based on their habits) or anomaly detection (e.g. 
detecting a vehicle with an unusual behaviour).

• Reinforcement learning regroups a set of tech-
niques to make models learn sequences of actions 
in a possibly uncontrolled and/or unknown envi-
ronment. Contrary to the supervised learning set-
ting, in which the ground-truth is given as labels, 
learning is guided by indications on how good an 
action is, given the state of the environment. Con-
sequently, the learning process is dynamic with 
respect to the feedback it gets from the environ-
ment, in a trial-and-error approach.

2.3.1.2 Classical machine learning

A wide range of techniques have laid out the foun-
dation of the field of ML coming from statistics and 
expert systems, such as linear regression, support 
vector machine (SVM), k-nearest neighbour (kNN) 
classifiers, or decision trees. The common point 
of these methods is that they usually operate on 
handcrafted features, whose quality can drastical-
ly change the performances of the model. Although 
these techniques show limitations in complex prob-
lems such as the ones encountered in computer vi-
sion or natural language processing, they are still 
very popular to solve a large range of problems, in 
particular when the volume of data is small, when 
the time available for model training is limited, or if 
the context domain is well understood.
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2.3.1.3 Deep learning

Although the ideas behind neural networks are as 
old as the field of ML, DL techniques have disrupt-
ed the ML landscape these last years, and exported 
the whole field of AI outside academic circles, thanks 
to simultaneous progress in computing capabilities, 
data acquisition and storage, and ML algorithms. 
The advances in hardware and the digitalisation of 
the society have permitted to train models on high 
performance computing infrastructure and to collect 
huge datasets to do so, in addition of progress made 
to speed up training algorithms.

One strength of DL is its ability to learn from raw 
data the most adapted representation for the con-
sidered problem, removing the need to handcraft 
features. DL techniques employ neural networks in 
layered architectures, denoted deep neural networks 
(DNN), allowing for flexible designs able to represent 
relationships between inputs and outputs. Each lay-
er is composed of a number of units called neurons 
that perform simple linear combinations between 
the outputs of the previous layer. These stacked 
architectures exhibits a specialization of groups of 
neurons in the deepest layers, able to extract more 
and more complex patterns.

Although powerful, DL is not a silver bullet as it suf-
fers from several limitations that make it impracti-
cal in some situations. First, the training of neural 
network models needs substantial amounts of good 
quality data and of computational power to be effi-
cient. Secondly, the development of such models, in 
particular during the training phase, lies on strong 
engineering practices with limited theoretical guar-
antees on the overall performances. This severely 
hinders the understanding of the behaviour of DL 
models, and is a reason of their vulnerabilities. Third-
ly, DNNs are notoriously known to provide accurate 
results but with an inherent lack of interpretability, 
making them acting as black boxes. The robustness 
of such systems with respect to unusual inputs or 
malicious actions is also under scrutiny by the re-
search community.

2.3.2 Relevant application fields in 
autonomous driving

2.3.2.1 Computer vision

Computer vision is an interdisciplinary field, at the 
intersection of ML, robotics, and signal processing, 
concerned with extracting information from digital 
images and videos. This covers all stages of the pro-

cessing chain, from the acquisition of images to the 
processing and analysis of the image, to the rep-
resentation of knowledge as numerical or symbolic 
information. To date, computer vision is the most 
relevant field of ML with existing applications in AVs. 
As such, the most significant and well-known vulner-
abilities and possible attack scenarios on AI mod-
els employed in AVs are involving computer vision 
techniques. A more detailed focus is then given with 
respect to other application fields of ML.

Images can take several forms, depending on the 
type of hardware sensors that have been used to 
obtain them. Computer vision has been historically 
interested in the handling of standard RGB images, 
that represent a large proportion of applications in 
robotics and image processing, but has also gained 
more and more interest in the analysis of other 
forms of images such as 3D point clouds, hyper-
spectral images, acoustic images, to name but a few. 
This trend has been significantly fostered with the 
recent availability of large data sets. In addition to 
the mode of acquisition, other variables such as the 
size, the resolution, the quality obtained, the envi-
ronment of acquisition, etc. have led to specialized 
sub-domains adapted to specific tasks.

The advent of highly performant convolutional neu-
ral networks (CNN) has been a major breakthrough 
that has drastically changed the technical landscape 
in computer vision. CNNs are an evolution of DNNs 
specifically designed to take into account the spa-
tial structure of images [68] by grouping the weights 
that are locally close. They compensate for one of 
the drawbacks of fully-connected networks by sig-
nificantly reducing the number of parameters to 
learn, making learning on high-dimensional data, 
which is typically the case of images that are com-
posed of millions of pixels, a more tractable prob-
lem. Convolutional layers act as a series of filters 
that are applied on a small portion of the image to 
detect a specific pattern such as edges, a specific 
shape, a dark area, etc., the particularity being that 
these filters are learned from the data. The size of 
the filters determines the complexity patterns, and 
has to be calibrated according the characteristics 
of the image. CNNs have been successfully used to 
extract, directly from the raw inputs, efficient rep-
resentations that are adapted to the problem, and 
that take into account natural invariances that often 
appear in images, such as symmetries. Figure 4 il-
lustrates a typical CNN architecture used for clas-
sification, and the basic mechanisms at play during 
the processing.

Today, the overwhelming majority of computer vi-
sion techniques are relying in one way or another on 
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CNNs, and more and more sophisticated approaches 
are considered to address always more complicated 
problems. In the following, the most relevant prob-
lems for autonomous driving are briefly summarized.

Object recognition, in its most common form, in-
cludes two tasks: detecting and classifying objects in 
an image. Localization is usually achieved by assign-
ing bounding boxes to regions of the image, while 
classification assigns to these regions a label from 
a list of pre-defined categories. 

To achieve high performance in the classification 
task, several architectures have been built by the ML 
community during the last decade, employing vari-
ous innovations aimed at increasing the expressive 
power of models, while limiting at the same time the 
cost of training. Among them, we can cite: AlexNet 
[69] is widely considered as the first breakthrough 
using CNNs; VGG [70] introduces the use of numer-
ous layers, with different size of filters; GoogLeN-
et [71], [72] makes use of the so-called Inception 
module, including at the same level various filters of 
different sizes; ResNet [73]  uses shortcut connec-
tions between layers to limit the tendency of large 
models to memorize the training data (also called 
overfitting); SqueezeNet [74] is designed to be em-
bedded in systems with low capabilities by reducing 
the number of parameters.

On top of classification architectures, object detec-
tion is implemented in two competing designs: single 
staged and double staged. Double staged approach-
es split the detection procedure into two stages, 
region proposal and bounding box search. By far 
the most widely accepted state-of-the-art double 
stage design is the family of Fast Region-based NN 
(R-CNN) [75] architectures. Conversely, single stage 

design detectors only employ one single network ar-
chitecture to classify directly pixels or regions. The 
“You Only Look Once” (YOLO) [76] architecture is 
an example of a successful single-stage detector, 
largely used in many recognition systems.

Object recognition in 3D representations, such as 
point clouds, is becoming more popular these last 
years, especially with advances in autonomous driv-
ing using LiDAR and radar. Albeit less mature than its 
counterpart in 2D, some first standard architectures 
have already emerged. Among those are techniques 
to project the 3D point clouds into a 2D space to 
use one of the known 2D detectors, for example the 
YOLO3D architecture [77], or, those techniques that 
directly develop algorithms working on the 3D data, 
such as VoxelNet [78] or PointNet [79].

Segmentation is an extension of object recognition 
that does not consider bounding boxes to delimit ob-
jects, but pixel-wise regions acting as masks over 
the image. A label is then assigned to each region 
to classify them into prescribed categories. Sever-
al types of segmentation problems have been dis-
cussed, among them, instance segmentation detects 
pixels of each object and assigns an identifier for 
each object; as for semantic segmentation, non-ob-
ject characteristics, such as sky, water, horizon or 
textures are part of the elements to segment. In the 
latter case, the full image is completely segmented, 
resulting in a label assigned to each individual pixels, 
forming continuous regions. As for object recognition 
models, segmentation makes an intensive use of 
CNNs. State-of-the-art approaches include SegNet 
[80], EnET [81], PSPNet [82], DeepLab [83], or Mask 
R-CNN [84].

Figure 6. Example of a typical CNN architecture used for classification. Convolutional layers are filters 
applied on portions of the images. At each layer, the number of intermediate images increases, while their 
dimensions is reduced. Only a small proportion of links between layers is displayed. The final layer condenses 
the values to return scores for each class, the highest score being the predicted class.
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Vehicle localization, often called Visual Odometry 
(VO), is a technique to estimate using a sequence of 
images captured over time by the camera mounted 
on the vehicle the pose of the camera, i.e. its position 
and its orientation. A common approach consists in 
tracking key-point features of clear landmarks and 
reconstructing the complete pose from these fea-
tures. Classical VO techniques still dominate the 
field for AV, although there have been increasingly 
promising results based on DNNs [85]. DL has also 
been built on top of classical algorithms implement-
ing outlier rejection scheme in order to discriminate 
ephemeral from static parts in images [86]. While 
most techniques focus on 2D images, various pro-
posals have been published to tackle the 3D pose 
estimation using DL [87].

Tracking of objects is used to determine the dy-
namics of moving objects. This can be seen as an 
additional layer on top of image recognition sys-
tems, providing for each frame of a video stream 
the objects present in a scene, the temporal connec-
tions between these objects, and a prediction of their 
future positions. Tracking systems, also referred as 
MOT (for Multiple Object Tracking) provide this func-
tionality by estimating the heading and velocity of 
objects, and applying a motion model to predict the 
trajectory. Tracking is a very active field of research 
in the computer vision community, and has been 
studied for a wide range of applications and contexts 
[88]. Techniques vary according to parameters such 
as the quality of the detection of objects, the type of 
data considered, the frame rate, or the nature of the 
motions involved.

Typically, tracking is solved by assigning an identifier 
to objects and trying to keep this identifier consistent 
through successive image frames. This consistence 
is implemented either by using measures of similar-
ity applied on handcrafted features based on image 
characteristics, such as colours or gradients [89], or 
by using CNNs [90]. The modelling of the dynamics 
is then done using sequential modelling tools to take 
into account the temporal dependencies between 
frames. The trend towards models that jointly ad-
dress multiple tasks concerns also the tracking and 
the prediction of objects, that is often coupled with 
object recognition systems. For example, the “Fast 
and Furious” [91] architecture considers simulta-
neously 3D detection of objects, their tracking over 
time, and the forecasting of their motions.

2.3.2.2 Sequence modelling

Modelling sequential data and training predictive 
systems is a very important subfield of ML with 

high relevance for autonomous driving. Sequential 
data encompass data sets that result from dynami-
cal or ordered process introducing a clear sequence 
and correlation between instances of the data set. 
Examples include time series modelling, prediction 
of trajectories, speech and language processing. 
Sequence modelling plays a significant role in pre-
diction and planning tasks and is used in robotics 
and signal processing in applications concerned with 
interpreting continuous flows of environmental data. 
Classically, the field is dominated by Markov models, 
autoregressive modelling and dynamical linear filter 
systems [92], which are built around the assumption 
of a certain correlation length between successive 
elements of the series paired with a probabilistic 
process to model the next element.

Recently, DL and unsupervised representation learn-
ing have introduced major advances into the field, 
mostly in form of specialized network structures, 
such as recurrent neural networks (RNN) [93] and 
modern variants such as the Long Short-Term Mem-
ory networks (LSTM) [94], able to deal with the se-
quential nature of data. Key advantages from DL 
based systems are their capability to easily discover 
long and short term correlations and to automati-
cally learn representations of dynamical processes, 
even in complex contexts.

2.3.2.3 Automated planning

Automated planning [95] is a rich field connected 
to ML at the intersection of other fields such as ro-
botics, complex infrastructure management, deci-
sion theory, and probabilistic modelling. It is mainly 
concerned with the search of optimal strategies, of-
ten described as a sequence of actions that should 
be followed by agents evolving in complex envi-
ronments, and how to perform them. There exists 
a wide variety of methods to find the optimal strat-
egy in the specific context of problems that this field 
aims to address. In the following, we provide a brief 
description of methods that have been used in an 
automotive context.

Graph-based planning is used when systems can 
be represented as networks, including a wide range 
of applications as diverse as social relationships, 
transportation or telecommunication networks [96]. 
In its simplest form, a graph is composed of nodes, 
that represent the entities, and of edges, that repre-
sent a link between the entities. For planning purpos-
es, algorithmic approaches have been used to find 
optimal trajectories along the edges of the graph to 
go from one node to another one, using pre-defined 
constraints. Classical algorithms coming from graph 
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theory, such as the Dijkstra, Bellman-Ford, or Floyd 
algorithms [97], are popular approaches that do not 
require ML techniques to provide satisfactory results.

Deep Reinforcement learning provides a range 
of methods well suited for planning tasks [98]. It 
involves learning mapping situations to actions so 
as to maximize a numerical reward signal. In an es-
sential way, they are closed-loop problems where 
the learner is not told which actions to take, as in 
many forms of ML, but instead discovers which ac-
tions yield the most reward by trying them out. In 
the most interesting and challenging cases, actions 
may affect not only the immediate reward but also 
the state of the environment and, through that, all 
subsequent rewards. Many approaches have been 
developed to find the policy that is optimal, i.e. the 
policy that returns in average the highest future re-
ward. The use of DL architectures [99] to model the 
environment has enabled significant advances, with 
techniques such as deep Q-learning or actor critic 
learning capable of scaling to previously unsolvable 
problems.

2.4 AI software in automotive 
systems
Driving in real world environments with other hu-
man-operated vehicles is far from an easy task, which 
requires complex socio-ethical and decision capabili-
ties able to cope with unexpected and dangerous sit-
uations. AI software components embedded in AVs 
are in charge of reproducing these capabilities, by 
processing data gathered via the sensors and inter-
pret them in order to decide the action to undertake 
(e.g. move, stop, slow down, etc.). Three main types of 
data processing capabilities are involved:  

• The perception module is responsible to collect 
multiple streams of data obtained from the sen-
sors, and extract from them relevant information 
about the environment. This includes the contex-
tual understanding of the scene: detection and 
tracking over time of vehicles (cars, trucks, bikes, 
etc.), pedestrians, and objects, and their tracking 
over time, recognition of traffic signs, traffic lights, 
marking, lanes, and more generally any element 
of interest for the driving. The perception module 
keeps also track of the localization of the vehicle 
in this environment, detecting its position and ori-
entation with respect to the road and other agents 
involved in the scene. 

• The planning module is in charge of the calcula-
tion of the trajectory that the vehicle will under-
take, considering the route between the start loca-
tion and the desired destination, as well as all the 

constraints the vehicle has to respect along the 
entire path. These constraints include the design 
of a safe and smooth route taking into account all 
possible obstacles (still objects, moving vehicles, 
etc.) and the compliance with driving rules, but 
also require to take into consideration behaviour-
al aspects due to the presence of humans in the 
environment. 

• The control module is responsible to execute the 
sequences of actions planned by the system by 
acting on the actuators (speed, steering angle, 
lights, etc.) to ensure that the trajectory is correct-
ly performed.

The decomposition of the general driving activity 
into subtasks is a standard approach to address 
complex problems that enable constructors to select 
the right methodology for each of the subcompo-
nents. ML has been mostly used in the tasks related 
to perception, to sense the surroundings and provide 
a useful representation of the environment. This was 
spurred by recent advances in computer vision that 
created industrial opportunities in this sector. Conse-
quently, companies have started to invest in vehicles 
to collect recordings of driving situations, build up 
infrastructures to collect, label and process those 
large datasets, and hire computer vision high-level 
engineering teams to develop model to address the 
related tasks. Although solving these problems is still 
an active area of development, commercial products 
and services are already in use in modern cars to at-
tain low to medium levels of automation. Converse-
ly, the use of ML for planning and control purposes 
is still in its infancy, while improvement is going fast, 
supported by large investments from tech compa-
nies. In this context, behaviour modelling techniques 
are leveraged to learn relevant driving policies that 
will determine the action to undertake to achieve the 
trip according to the environment encountered by 
the vehicle. These problems are different from per-
ception problems, and are still considered as frontier 
research in the academic community.

Current systems are already achieving tremendous 
performances in a wide range of conditions, but their 
capacity to generalize is limited by the extreme com-
plexity and diversity of the world. A crucial challenge 
still unsolved for ML systems is the right general 
handling of edge cases, where an unknown situation 
outside of the training data distribution is encoun-
tered. It is very challenging to guarantee that an AI 
system will output the right results in unusual con-
ditions, leading to potentially hazardous situations, 
for instance ignoring a stop sign partially covered by 
snow, or stopping in front of a bush slightly over-
hanging the side of the road.
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In the rest of the section, an overview of the different 
tasks, and the main techniques that are employed 
to address them, is presented. This overview is pri-
marily based on works published by the research 
community and may not reflect accurately the tech-
nology embedded in actual semi-autonomous cars, 
as only limited information is released by car manu-
facturers on this matter. In addition, perception tasks 
are prevalently discussed over others, as they con-
stitute currently the main sources of vulnerabilities 
of AI systems.

2.4.1 Perception

The perception system refers to the ability of an 
AV to make sense of the raw information coming in 
through its sensors. It aims at the creation of an in-
termediate level representation of the environmen-
tal state around the vehicle, and at the tracking of 
the evolution of this state over time. This includes, 
amongst others, the capability to detect, classify 
and identify everything that an AV potentially could 
encounter or has to interact with, such as the in-
frastructure (roads, signs, traffic lights, etc.), agents 
(cars, cyclists, pedestrians, etc.), or obstacles. It also 
consists in the construction of an internal map of the 
environment, allowing the vehicle to localize itself 
and other objects of agents in space and time.

The most relevant perception tasks for AVs can be 
ordered along the terms of scene understanding, 
scene flow estimation and scene representation and 
localization. Nowadays, much of the field is domi-
nated by DL techniques, albeit strong influences are 
coming from robotics, especially for localization and 
mapping techniques [100], and classical time series 
pattern recognition filters [101].

2.4.1.1 Scene understanding

Scene understanding encompasses all tasks that 
aim to provide a current picture of the immediate 
environment of the AV. Typical tasks include the de-
tection and recognition of all elements present in the 
environment. Most approaches that fall under scene 
understanding make use of data streams from var-
ious sensors and employ very successful computer 
vision based architectures. However, understand-
ing objects in a realistic traffic environment in real 
time poses a number of additional complexities to 
the theoretically often extremely accurate computer 
vision systems. This requires indeed taking into ac-
count the variability of the scene:

• Variability of appearance: elements present in the 
environment can have a wide diversity of aspects: 
objects, actors and surfaces can have various 
shapes, colours, texture, orientation, brightness, etc.;

• Variability of environments: the environment itself 
varies according to various factors, including the 
time of the day, the season, the weather, but also 
societal factors (maintenance works, strikes, be-
haviours of agents, etc.);

• Variability of meaning: objects can have different 
meanings in different contexts or at different times 
(e.g. traffic signs with time or space constraints), 
or wrong appearances, for instance in case of re-
flections. 

Identification of roads and lanes This requires 
distinguishing drivable areas (roads, driveway, trail, 
etc.) from non-drivable areas (pavement, rounda-
bouts, etc.), the different types of surface, and the 
various lanes present on the road indicating the di-
rection of the traffic flow. This task has been widely 
investigated over decades, and has been integrated 
in vehicles through functions such as lane keeping 
assistance or lane change assistance. Therefore, 
such technologies generally do not rely on recent 
trends in ML, but rather on a wide collection of tech-
niques based on handcrafted features [102] that 
have proven to be very efficient and reliable. This is 
done on 2D and 3D images, and is often comple-
mented by real street maps. Despite this, traditional 
methods tend to be limited to understand the chal-
lenging semantics conveyed by lanes on the road, 
and this task is getting more and more integrated 
in end-to-end DL systems. This is for instance the 
case of the Tesla’s Autopilot [103], whose the ADAS 
to detect stop lines along the road is implemented 
using a DL architecture.

Detection of moving agents and obstacles The 
detection of moving agents (pedestrians, cyclist, 
vehicles, etc.) and obstacles (plants, objects, etc.) is 
mainly addressed using object detection, segmen-
tation, and tracking techniques. Detection and clas-
sification of objects from 2D or 3D images such as 
camera data can be successfully tackled with com-
puter vision architectures, providing that the train-
ing dataset is rich enough to characterize fully the 
diversity of environments. Recognition and segmen-
tation techniques are used to detect drivable areas, 
objects, pedestrian paths or buildings.

Traffic signs and markings recognition The de-
tection and recognition of the given sign and/or the 
written indications is crucial to ensure a safe driving. 
Driving instructions are typically provided according 
to several vectors:
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• Traffic signs, usually using a symbolic rep-
resentation, are the most common driving indica-
tors. While signs vary depending on the shape, the 
colour, and the pictogram drawn on it, internation-
al conventions have helped to achieve a degree 
of uniformity, despite small local variations. While 
image-processing approaches have been mainly 
taking advantage of the well-defined shape and 
colours of signs, DL has greatly improved the rate 
of detection [104]. Models based on CNNs are now 
regularly employed [105], taking advantage of 
various datasets released for this task [106].

• Traffic lights are using a position (usually top, 
middle, bottom) and colour (usually red, orange, 
red) code to indicate if the vehicle should stop, 
prepare to stop, or is allowed to pass. Particular 
cases should also be taken into account, for in-
stance when a light is blinking. Research works 
are currently mostly limited by the scarcity of rep-
resentative public datasets, but are nonetheless 
led to the development of DL systems including 
special processing in the colour space [107], [108]. 
Industrial actors have nonetheless already includ-
ed traffic light recognition in their vehicles as an 
assistance feature [109].

• Textual indications are also an important way 
to convey information, in particular in situations 
where unanticipated rules should apply (e.g. de-
tours, accidents, traffic jam, etc.). Text can be 
found on traffic signs, painted on the road, or on 
variable-message signs. Understanding textual 
indications commonly requires three steps: 1) the 
detection of the text in the image, 2) the recogni-
tion of the characters, 3) the understanding of the 
meaning. The last step is all the more important 
since numerous text signs without connection with 
traffic indications can be found alongside roads, 
like advertisements or touristic information. Cur-
rently, this task is mostly done in an ad-hoc man-
ner, without learning involved. Text detection and 
recognition in natural scenes have nonetheless 
been an important area of research, either on stat-
ic images [110] or videos [111], taking into account 
artefacts, such as distortions or out-of-focus texts. 
State-of-the-art approaches have combined con-
volutional and recurrent  neural networks [112], to 
achieve text recognition and understanding. The 
availability of datasets [113], [114], although lim-
ited, is expected to foster the scientific community 
to advance research on this ongoing topic that will 
also benefit autonomous driving.

Previously based on handcrafted features describ-
ing images based for example on the colour or the 
shape, object recognition and semantic segmenta-
tion techniques are now systematically used. These 

techniques require nonetheless adjustments to 
adapt to the relatively small size of signs and mark-
ings compared to bigger objects such as vehicles, as 
CNNs are typically compressing the image, result-
ing to small objects, such as signs, to be overlooked. 
Recognition is also greatly affected by unusual envi-
ronmental conditions, with degraded performances 
when the symbols are partially occluded by obsta-
cles or stickers, or hard to distinguish due too direct 
sunlight or heavy precipitation.

Sound event classification Recognizing environ-
mental sounds is an important aspect for the under-
standing of the driving scene: many elements, such 
as tire screeching, honking, or even engine throbbing, 
convey information about the vicinity of the vehicle, 
and can help anticipate hazardous situations. This 
is particularly true for sirens of emergency vehicles 
that indicate a situation where driving rules have to 
be adapted. Albeit visual lights are usually present, 
they may not be visible to the vehicle, for instance 
in the case of a busy intersection, and ignoring the 
sound alarm could have dramatic consequences. 
Sounds also complement the other sensors in low 
visibility situations.

As for images, sound processing largely makes use 
of DL techniques [115], either on raw data or on 
spectrograms (frequency representation of sound 
signals), even if traditional approaches are still wide-
ly used due to the long-standing work on handcraft-
ed features relying on physical and cognitive prin-
ciples. Related to AVs, few works [116] have been 
proposed, partly because of the small interest of the 
AV community on these topics compared to vision, 
and a lack of availability of dedicated datasets. De-
tecting relevant sounds in urban areas, especially in 
noisy situations, is nonetheless an open challenge 
that will play an important role in the capacity of AVs 
to achieve human-like performances.

2.4.1.2 Scene flow estimation

Scene flow estimation collects those perception 
tasks, which are concerned with the dynamical be-
haviour of the scene, mostly the movement of the 
objects and vehicles.

Tracking and prediction of moving agents and 
obstacles

The most important task in scene flow understand-
ing is to track objects and vehicles to predict their 
individual motion and may require modelling the 
behaviour of other traffic participants, which is very 
relevant for planning tasks. The two main challenges 
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are the tracking of self-motion or stationary objects 
and the prediction of object motion and behaviour.

Tracking and predicting the motion of objects locat-
ed in the immediate environment of the AVs rely ev-
idently first on the ability to detect those objects, but 
pose a number of additional challenges, which led to 
the development of a class of tracking and prediction 
methods [117]. The basic object detection problem is 
extended through a time axis dimension, where indi-
vidual objects need to be tracked frame by frame, or, 
conversely their likely trajectory is to be extrapolat-
ed into the future. The employed techniques usually 
rely on elements from sequence modelling, such as 
probabilistic Markov models or, increasingly, deep re-
current neural network architectures.  Both, tracking 
and prediction – as object detection itself – are con-
ducted using either 2D camera image data, 3D point 
cloud (mostly LIDAR) data, or both.

2.4.1.3 Scene representation 

Scene representation tasks involve the simultaneous 
mapping of the environment and continuous locali-
zation of the AV itself within the environment.

Localization It consists in estimating the position 
and orientation of the AV with respect to the sur-
rounding environment. These techniques actually 
belong to the wider set of methods from the area 
of Simultaneous Localization and Mapping (SLAM), 
which has been addressing the same range of prob-
lems since decades for mobile robots. SLAM algo-
rithms traditionally do not require a priori informa-
tion about the environment, which allows them to 
be used anywhere, but the challenging environment 
in which vehicles evolve, especially in urbanized ar-
eas, makes the use of maps [118] a crucial element 
to achieve a high level of accuracy. Localization is 
achieved by matching maps with sensory informa-
tion, such as GNSS or cameras and LIDARs outputs. 
The fundamental technique being used in this con-
text is visual odometry. Various proposals have also 
been published to tackle the 3D pose estimation [85].

Occupancy Maps or Occupancy Grids An occu-
pancy grid is a type of probabilistic mask that re-
turns for each cell of a gridded map of the environ-
ment the probability that the cell is occupied. This is 
another popular technique from robotics [119] that 
is used for localization and mapping in autonomous 
driving. It can be inferred from the camera and LI-
DAR data. Techniques for calculating the occupancy 
grid vary, and have been mainly based on ad-hoc 
methods, even if currently DL based approaches 

have also been used, e.g. for subsequent classifica-
tion of likely objects or the road type [120], [121].

2.4.2. Planning

Planning tasks comprise all the calculations needed 
to perform vehicle actions autonomously, from route 
planning to the implementation of an immediate mo-
tion trajectory in a given driving situation. They are 
confronted with the difficulty to evaluate correctly 
the system predictions: Contrary to perception tasks, 
where the ground-truth information is usually known 
and can be compared with predictions, assessing the 
performances of plann ing systems requires 
a real world testing in controlled environments, or 
an evaluation stage in a simulator. Even under these 
challenging settings, AVs are able to handle most 
situations, but may fail to take the right decision in 
scenarios that have not been considered in the data, 
the model, or the simulations. The reasoning func-
tionalities mainly rely on advanced AI methods for 
autonomous agents and robotics [122], [123]. 

2.4.2.1 Route planning

Route planning (or routing), also called global plan-
ning, consists in finding the best route between the 
current position of the vehicle and the destination 
that is requested by the user. It relies on GNSS coor-
dinates and offline maps that are embedded in the 
vehicle. The road network is classically represented 
as a directed graph: nodes of the graph are way 
points, usually referring to intersections between 
roads, while edges correspond to the road segments, 
and are weighted to reflect the cost of traversing 
along this road, the cost being computed through 
a metric considering the distance of the segment 
and/or the time of travel. The problem is then to find 
the shortest path between two nodes of the graph. 
The output of route planning is then a sequence of 
way points that are used to generate the trajectory 
of the vehicle in the environment.

Several approaches have been developed to address 
this problem. Routing algorithms are usually relying 
on specialized heuristics [124] based on graph theo-
ry algorithms that have been developed to take into 
account the size of such graphs (usually several mil-
lions of edges) and circumvent the intractability of 
standard shortest-path algorithms. The efficiency of 
algorithmic graph solutions makes the use of AI tech-
niques less relevant, albeit ML could be leveraged to 
adapt in real-time the topology of the graph with 
external information [125] or provide personalized 
routes that includes for example touristic sites [126].
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2.4.2.2 Behavioural planning

Behaviour planning implies to select what is the most 
appropriate driving behaviour to adopt for the vehi-
cle, based on the representation of the environment 
and on the route to follow. Such a behaviour can be 
described as a sequence of high-level actions. As an 
example, if the route imposes to turn left at the fol-
lowing intersection, an appropriate behaviour could 
consist in a sequences of actions such as “Stop the 
vehicle before the intersection”, “Observe the behav-
iour of vehicles that are coming on the opposite lane 
and in the crossing lane”, “Detect any potential pe-
destrian that are about to cross the road”, and finally 
“Wait till the path is clear, and then turn left”. This 
decision-making process can be modelled by a finite 
state machine, where states are the different be-
haviours of the vehicle, and the transitions between 
states are governed by the perceived driving context. 

One of the key tasks for behavioural modelling is the 
detection of the driving style of other agents. Driving 
style designates the various behaviours drivers can 
adopt while driving, classified with qualifying terms 
such as aggressive, sporty, calm, moderate, low-skill, 
or overcautious, to name but a few [127]. Recognis-
ing the behaviour adopted by a human-driven vehicle 
is crucial to understand its dynamics, and is in this 
respect closely related to the task of tracking the 
other moving agents. Furthermore, planning systems 
have to adopt themselves a driving style, possibly 
giving to the human user a choice between different 
presets, and find the right trade-off between a con-
servative driving that could lead to longer journey 
and aggressive driving that could be unsafe and/or 
uncomfortable for the passengers. The learning of 
driving style is an important yet unexplored topic of 
research, mostly taking advantage of unsupervised 
approaches [128]–[130] to circumvent the absence 
of labelled datasets. The use DL has considerably 
extended the range of modelling capabilities [131], 
using the vast amount of driving activities recorded 
by companies to provide simulating environments 
in which planning models learn to react to different 
driving scenarios, either by imitating human drivers 
[132], [133], or through deep reinforcement learning 
to perform safe and efficient driving [134], [135].

2.4.2.3 Motion planning

Motion planning (or local planning) is responsible of 
finding the best trajectory of the vehicle in its per-
ceived environment in accordance to the route that 
has been calculated and the behaviour that has been 
selected. This consists in the translation of high-level 
actions into a sequence of way points referring in the 

coordinates of the perceived environment. This tra-
jectory has to take into account several constraints, 
such as being feasible by the vehicle (taking into 
account for example the current speed), being safe, 
lawful and respectful to other participants present in 
the environment, as well as ensuring a smooth driv-
ing for the passenger.

Traditional approaches have been developed in the 
robotics community. Typically, the environment is di-
vided into a dynamic grid, where each cell has tem-
poral attributes that are informed by the perception 
module. The objective is then to find a trajectory 
between two given cells under multiple constraints, 
relying on techniques based on graph search, sam-
pling, or curve interpolation [117]. Recently, ML tech-
niques have been employed for local planning, with 
promising results, in particular in their capacity to 
avoid erratic trajectories and achieve human-like 
motions. Generally, these approaches are address-
ing perception and planning at the same time, either 
through segmented image data including path pro-
posals [136], or by extracting features from LIDAR 
point clouds [137]. DL has also been used solely for 
planning, using RNNs to model sequences of way-
points of trajectories based on a dataset of human 
motions [138], or reinforcement learning in simulat-
ed environments to learn a driving policy that can be 
extended to real-life situations [139].

ML has achieved tremendous progress in local plan-
ning, but has not yet reached a level of maturity suf-
ficient to be implemented in commercial cars. A ma-
jor limitation is indeed the difficulty to make sure 
that safety measures are properly learnt, as they 
cannot be hard-coded in the planning systems as for 
traditional systems. Nonetheless, their flexibility and 
they capacity to adapt to unknown situations, pro-
vided the context is similar to the one in which the 
model has been trained, are a strong argument in 
favour of future deployment of ML based planners.

2.4.3 Control

The control system is responsible for the execution 
of the trajectory that has been calculated by the 
planning system by applying commands for the var-
ious actuators of the vehicle at the hardware level. 
Broadly speaking, a vehicle has two types of motions: 
lateral, controlled by the steering of the vehicle, and 
longitudinal, controlled by the gas and brake pedals.

Control techniques regroup a set of methods to mon-
itor the dynamics of a system, in order to achieve 
a given action, while satisfying a set of constraints. 
Such systems act in a closed loop manner, with an 
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objective value (e.g. a desired speed) prescribed to 
the controller, which has the ability to actuate on 
the systems (e.g. through braking and acceleration), 
while getting feedback through monitoring to ensure 
an optimal and stable trajectory of the dynamics of 
the system. Two popular approaches are Proportion-
al-Integral-Derivative (PID) control [140] and Model 
predictive control (MPC) [141]. The former consists in 
continuously calculating the difference between the 
desired and the measured values of the controlled 
variable by tuning the relative importance between 
three different terms, describing corrections to apply 
to get an accurate and smooth trajectory. The latter 
relies on predictions of the changes of the controlled 
value, based on a model of the system. Compared 
to PID controller, it is costlier in terms of complexity, 
but allows considering situations where the dynam-
ics has a higher variability, or the delays between 
actions and feedbacks are higher.

In the case of AVs, the main difficulty lies in the high 
complexity of the relationships between controlled 
variables (such as speed or steering angle) and actu-
al commands to actuators. Human drivers, with their 
experience and their understanding of the physical 
world, are constantly monitoring the movement of 
the vehicle, and the different indicators, such as the 
speedometer, to correct and make sure the behav-
iour of the vehicle is compliant with their intentions. 
By doing that, they integrate implicitly parameters 
as complex as the total weight of the vehicle, the 
friction forces of the tires on the road, or the wind 
intensity, through their sensory perception and their 
modelling of the environment. While it is straightfor-
ward to formalize an accurate model between the 
actuators and the actual behaviour of the vehicle at 
low speed, additional factors linked to the environ-
ment strongly increase the complexity of this model 
at high speed. Nonlinear control or model predictive 
control have to be used to take into account this 
complexity. To this end, ML techniques have already 
shown great potential to improve the predictive pow-
er of control models, albeit as of now they are not 
deployed in commercial vehicles.

2.4.4 Infotainment and vehicle interior 
monitoring
AI is not confined to driving functions, and has also 
been proven useful in infotainment systems and ve-
hicle interior monitoring. These features are start-
ing to be increasingly integrated in modern vehicles 
[142], [143], offering embedded hardware dedicated 
to voice recognition, or personal assistant controlla-
ble via vocal control and facial expressions.

Human machine interface (HMI) It provides pas-
sengers the ability to interact with the car, either 
to give commands to the driving or entertainment 
systems for instance, or to receive information, such 
as the current itinerary. DL is used to provide novel 
communication vectors, such as speech or gestures. 
Speech recognition embedded in vehicles are able 
to understand spoken commands that follows the 
syntax of normal spoken conversation. Gesture rec-
ognition systems are able to interpret common hand 
gestures, so that gesture based controls become 
applicable to interactive displays. Recommendation 
systems to anticipate the choice of users can also be 
included as part of HMI systems.

Vehicle interior monitoring It consists in monitor-
ing the interior of the vehicle through sensors (e.g. 
cameras, microphones, temperature sensors, etc.) to 
ensure the general comfort of passengers. This func-
tion has been originally designed to monitor drivers’ 
fatigue, through the monitoring of driver behaviour. 
Therefore, real-time analysis of biometric factors 
(e.g. heart rate, respiratory rate, eye blinking, etc.) 
could trigger a warning alarm to alert the driver. For 
fully AVs, this function could be used to control the 
level of comfort, by automatically adjusting sounds, 
lights, or any additional factors based on predictive 
models of the well-being of human passengers.

2.4.5 Current trends in AI research for 
autonomous driving
End-to-end approaches: A general trend in ML is 
the use of an end-to-end, holistic approach to tackle 
several problems at the same time. The rationale be-
hind this approach is that developing separate mod-
ules tend to be inefficient in terms of computational 
power, but also may lead to poorer performance, as 
uncertainties appearing in the upstream section of 
the driving pipeline are propagated and amplified 
along all modules. Several variants of this approach 
exist: a popular one is to consider jointly all tasks of 
perception or planning, or even all tasks from both 
modules altogether. Nonetheless, the approach re-
lies on a wide diversity of techniques, ranging from 
the prediction of driving paths from camera images 
[136], point clouds, GNSS measurements, and or ex-
ternal information [137], to the prediction of steer-
ing commands from the same kind of inputs [144]. 
Behaviours can also be predicted in an end-to-end 
fashion from raw pixels [145], [146].

Simulation: The cost of data acquisition has led 
to the development of many simulators, in order to 
address large quantities of data. These simulation 
environments, many of them released as open-
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source software, also lowered the upfront invest-
ment necessary to do research on AVs, and have 
been the basis for numerous research works, some 
of them described in this report. Popular simulators 
include TORCS [147], CARLA [148] and AirSim [149], 
which take advantage of graphics engine used in 
video games to offer a realistic representation of 
the world. These simulators, as well as others [150] 
also include tools to customize sensors (e.g. camer-
as or LIDARs [151]), offer typical driving scenarios 
to play, and provide easy integration of ML tools 
for quick development. Other initiatives have been 
launched to promote autonomous driving research 
towards students and tech enthusiasts, such as 
DeepTraffic [152].

2.5 Mapping between automotive 
functionalities, hardware and 
software components and AI 
techniques
As a conclusion of this section, the most important 
key findings are summarized in the form of three ta-
bles. First, a correspondence between the high-level 
functionalities and the intermediate tasks is given. 
Then these tasks are mapped respectively with the 
hardware and software components that have been 
identified, and finally with the AI techniques.
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Adaptive cruise control X X X X X

Automatic Parking X X X X X

Automotive navigation X X X

Blind spot / cross traffic / 
lane change X X X X X X X

Collision avoidance 
systems X X X X X X X

Lane keeping X X X X X

Traffic sign recognition X X

Environmental sound 
detection X

Table 2. Correspondence between high-level functions and low-level functions
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Automotive Functionality

Software Components Hardware Components
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Traffic sign recognition X X X

Markings recognition X X

Tracking of objects X X X X

Localization X X X X X X

Occupancy maps X X X X

Routing X X X

Behaviour modelling X X X X X

Motion planning X X X X X X X X

Trajectory execution X X X X X

Sound event recognition X X

Table 3. Correspondence between low-level functions and hardware and software components

Table 4. Automotive functionalities and related AI techniques
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Routing X

Behaviour modelling X X X

Motion planning X X

Trajectory execution X X
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3. CYBERSECURITY OF AI TECHNIQUES IN 
AUTONOMOUS DRIVING CONTEXTS

3.1 Vulnerabilities of AI for 
autonomous driving
The development of increasingly autonomous and 
connected vehicles inevitably requires a higher lev-
el of computational functionality and connectivity, 
which, in turn, widen the attack surface and the like-
lihood of physical and cyber-attacks. Cybersecurity 
risks in autonomous driving vehicles can have a di-
rect impact for the safety of passengers, pedestrians, 
other vehicles and related infrastructures. It is there-
fore essential to investigate potential vulnerabilities 
introduced by the usage of AI. This section focuses 
on the general vulnerabilities and security challenges 
in autonomous driving posed by AI, with a particular 
focus on ML. It also includes an analysis for specific 
AI-related vulnerabilities in autonomous cars.

Following consolidated threat modelling practice 
[153], threats related to AI can be divided into two 
groups: intentional and unintentional. Intentional 
threats include those coming from a malevolent ex-
ploitation of the limitations and vulnerabilities pres-
ent in AI and ML methods to cause intended offence 
and harm. Intentional misuse of AI leads to change 
of the current cybersecurity landscape by introducing 
a new class of vulnerabilities and raising the ceiling 
of potential impacts. The growing use of AI to au-
tomate decision-making in a diversity of sectors ex-
poses digital systems to cyberattacks that can take 
advantage of the flaws and vulnerabilities of AI and 
ML methods. Since AI systems tend to be involved in 
high-stake decisions, successful cyberattacks against 
them can have serious impacts. AI can also act as an 
enabler for cybercriminals: Cybercriminals can use AI 
to automate aspects of their attacks, enabling them 
to launch attacks more quickly, at a greater scale and 
a lower cost and with higher precision.

Unintentional threats come as side effects of be-
nevolent usages, due to open issues inherent in the 
trustworthiness, robustness, limitations and safety 
of current AI and ML methods. Unintentional threats 
comprise unpredictable malfunctioning, failures or 
negative aftermaths caused by shortcomings, poor 
design and/or inner peculiarities of AI and ML. Ex-
perimental research and real-settings operations 
have demonstrated that these methods may suf-

fer from several issues. This includes unfairness of 
the decision made due to the propagation of biases 
from data to models and outcomes, opacity of the 
decision process due to complex model structures 
and mathematical operations that escape from an 
ease straightforward interpretation, unsafety due to 
critical scenarios badly represented or outside the 
training data fed to the model during the develop-
ment phases, or challenging reproducibility and veri-
fication that can convey a mismatch among real and 
expected results of ML methods and cause issues 
when reproducing and investigating the decisional 
process. These issues affect also the reliability of the 
methods when used in practice.

The present report focuses on the exploitation of 
AI vulnerabilities to compromise the integrity and 
availability of AVs, which belongs to the category 
of intentional threats. In particular, adversarial ML 
is discussed, as a prominent field of research linked 
to cybersecurity of AI, and as an immediate threat 
for AVs. It is nonetheless worth mentioning the same 
technical challenges underpin both intentional and 
unintentional challenges, and improving all aspects 
described above benefits security and safety of AI 
systems as a whole. Research in ML is gathering 
a lot of interest and aggregating substantial com-
munity effort, providing advances to increase the 
robustness and reliability of AI methods in both nor-
mal and adversarial settings. A larger overview of 
AI cybersecurity is discussed in the ENISA AI Threat 
Landscape [1], its relevance in the larger context of 
digital transformation is outlined in a JRC report on 
cybersecurity [235]. 

3.1.1 Adversarial machine learning

Adversarial ML emerged in 2004 dealing with the ro-
bustness of antispam filters [154] and has since then 
evolved investigating how to challenge and guaran-
tee the security of ML methods and systems [155]. 
Since then, a large amount of work has been done, 
suggesting that ML-based systems could introduce 
further vulnerabilities easily exploitable by skilled 
attackers. Paradigmatic cases of attacks against ML 
systems used for pattern recognition in cybersecurity 
are: submitting a fake biometric trait to a biometric 
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authentication system (spoofing attack) [156], [157]; 
modifying network packets belonging to intrusive 
traffic to evade intrusion detection systems [158], 
[159]; manipulating the content of spam emails to 
make them escape spam filters (e.g. by misspell-
ing common spam words to avoid their detection) 
[160], [161]; manipulating of malware to evade ML-
based malware detection; deceiving face recognition 
systems [162], [163]; taking control of a voice in-
terface system, by way of hidden voice commands, 
unintelligible to a human listener [164] or the deceit 
of reading comprehension systems [165]. The possi-
bility to subvert otherwise-reliable ML systems has 
received considerable attention since 2014, when it 
was shown that CNNs for object recognition could be 
tricked by passing them slightly perturbed images 
[166], [167]. Much effort has been devoted to the 
topic since then, establishing the subfield of adver-
sarial ML as the most active area of research focus-
ing on the security and robustness of ML systems 
to adversarial input, especially those relying on DL.

The most common attacks on AI systems can be dis-
tinguished between evasion and poisoning attacks. 
The first type of attacks aims to manipulate what is 
fed into the AI system in order to induce a system 
output that serves the attacker’s goal. On the other 
hand, poisoning attacks corrupt the training, so that 
the resulting system malfunctions in a way desired 
by the attacker. A big share concentrates on attacks 
to supervised learning models, including attacks 
against regression methods [168], [169] , SVM [162], 
and ensembles of classifiers [170]. Vulnerabilities of 
unsupervised learning models have also been ex-
plored, examining possible attacks against cluster-
ing methods [171]–[173] . With the greater integra-
tion of DL techniques in many critical applications, 

this area of research has gained much attraction in 
the last years [174]–[178] . Recently, reinforcement 
learning models have been probed with respect to 
vulnerabilities [179]–[181], as a consequence of 
their reliance on DL models [182]. Other attacks are 
continuously devised by the research community, for 
instance against real-time video classification sys-
tems [183], or against RNNs [177]. 

3.1.2 Adversarial examples in computer 
vision
Adversarial examples are the result of an evasion 
attack, and consist in tiny perturbations of the input 
that cannot be detected by human but are leading to 
a misclassification with high confidence by ML mod-
els. Albeit adversarial examples can be found for any 
kind of inputs, such attacks have been particularly ex-
plored for computer vision models. As shown in Figure 
8, adversarial examples are typically created by add-
ing a small amount of carefully calculated noise to 
a natural image. This kind of attack can fool state-of-
the-art, highly performant image-recognition models 
whilst being often imperceptible to humans.

The research on adversarial examples has gradually 
become a hotspot in the computer vision community, 
and researchers have constantly proposed new ad-
versarial attack methods. A commonly referred set-
ting for adversarial crafting considers that the ad-
versary’s goal is to define a perturbation that, applied 
to an input image, makes the model misclassify the 
resulting perturbed image [186]. The ways of gen-
eration of adversarial perturbation depends on the 
adversary’s knowledge of the system. A distinction 
is commonly made between white-box and black-

School bus (1.00) Perturbation Guacamole (0.98)

Figure 8. Illustration of an adversarial example using the Basic Iterative Method [184]. The classifier 
used is Inceptionv3 [71]. The image comes from the validation set of the ImageNet dataset [185]. (Left) 
Original image, correctly classified as a school bus. (Middle) Perturbation added to the image, with a 10x 
amplification. (Right) Adversarial example, wrongly classified with high confidence.
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box attacks [187]: In white-box attacks, the attacker 
has a full knowledge of the model that typically in-
cludes the parameters of the model and sometimes 
the data used for the training. Conversely, black-box 
attacks consider that the attacker has only access to 
a limited set of pairs of inputs-outputs or is only able 
to submit its own inputs to the model and gets the 
corresponding outputs. An intermediate situation, 
often referred as grey-box setting, considers the 
same situation as for black-box attacks except the 
adversary has a limited knowledge about the model, 
e.g. its training set or the family of models that is 
employed [188]. The generation of adversarial ex-
amples for ML models is most commonly studied 
from the standpoint of a white-box attack. Black-
box attacks have nonetheless been demonstrated in 
many contexts, and are usually built on top of white-
box attacks using substitute models [187], relying 
on the transferability of adversarial examples from 
a model to another one, i.e. their capacity to work on 
a range of close yet different architectures.

The field of adversarial ML has been mainly built on 
top of computer vision techniques, and in particular 
of classification models. This report reflects this situa-
tion, which is also especially relevant for AVs that are 
composed of multiple classification systems working 
on images. It is nonetheless worth mentioning the 
techniques introduced can be generalized to other 
types of problems (detection, regression, behaviour 
modelling, etc.) and data (text, sound, tabular data, 
etc.), extending the scope of adversarial attacks.

3.1.2.1 Overview of adversarial example attacks

Following the seminal work of Szegedy et al. [167], 
most techniques proposed to perform adversarial at-
tacks are exploiting the gradients of the model, com-
puted in order to maximise the effect of adversarial 
perturbations in altering the output of the model. As 
for the training phase that exploits the same idea to 
update the model parameters, the minimization of 
a loss function is used to describe the adversarial 
problem [189]. The complexity of the problem usu-
ally makes the resort to an optimization algorithm 
necessary to get a satisfying solution, which is most-
ly based on a classical technique called Projected 
Gradient Descent (PGD) [190]. 

A first line of research consists in improving the opti-
mization process at play during the attack to make it 
practical for large dataset and allows for better solu-
tions. This is done either by finding better terms to 
include in the loss function (i.e. that are both a good 
approximation of the objective one want to achieve 
and have properties that improves the minimization 

process), or improving the algorithm used to mini-
mize it (i.e. finding the iterative steps that will con-
verge to a good solution). Fast Gradient Sign Meth-
od (FGSM) [191] relies on a single optimization step 
that includes only the signs of the gradients. Basic 
Iterative Method (BIM) [184] extends this approach 
by applying FGSM iteratively, increasing the chance 
of successes of attack by crafting more complicat-
ed perturbations [192], [193]. Other approaches, 
like Jacobian Saliency Map (JSMA) [194], rely on the 
localization of the salient pixels of the images and 
focus on these specific areas to craft the perturba-
tions. C&W attacks [195] add multiple refinements 
to previously mentioned techniques to increase the 
chance of success, and in particular to bypass sever-
al defensive mechanisms that have been suggested 
to counter adversarial attacks. 

A second line of research that is complementary and 
usually considered simultaneously in the design of 
the optimization problems concerns the choice of 
the constraints to apply on the perturbations. Most 
techniques are typically trying to find the minimal 
perturbation possible, in order to make it less per-
ceptible by a human auditor. This is often expressed 
as the average over all pixels of the intensity of the 
perturbation, the maximal intensity, or the number 
of pixels that are perturbed. Depending on the type 
of constraints, the optimization algorithms will be 
chosen accordingly to achieve a good convergence, 
i.e. make sure that the whole process returns a per-
turbation that is indeed a good minimum for the con-
sidered loss function. As an example, the DeepFool 
attack [175] computes a minimal norm adversarial 
perturbation for a given image in an iterative man-
ner, in order to find the decision boundary closest 
to the clean input image and find the minimal ad-
versarial sample. Some attacks are also considering 
very specific setting, like the One Pixel attack [196] 
that constraints the perturbation to affect only one 
single pixel. Other approaches exist to address dif-
ferent contexts and applications. The Houdini attack 
[197] works on non-differentiable loss functions, and 
has been proven useful in domains such as natural 
language processing, while the Zeroth Order Optimi-
zation (ZOO) attack [198] has been used in black-
box settings to estimate gradients based on outputs. 
A current trend is the use of generative models 
[199], [200] to synthesize adversarial examples en-
tirely from scratch. While these approaches do not 
allow modifying existing images, their capacity to 
generate realistic samples wrongly classified is get-
ting more and more problematic, and is closely relat-
ed to the growing use of deepfakes [201].

Similar approaches have been followed to generate 
adversarial examples for other types of data, not 
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coming from cameras but from other sensors that 
can be found on autonomous vehicles. Examples in-
clude attacks on 3D points clouds outputted by LI-
DARs [18], [202]–[204], on radars [205] or ultrason-
ics sensors [206]. The paucity of standard datasets 
makes this area of research less fruitful compared 
to traditional RGB images, but the democratization 
of devices and the development of methods follow-
ing the same concepts as for traditional imagery 
(e.g. transferability of adversarial examples between 
3D point cloud models [207]) will increase the effi-
ciency of adversarial attacks.

3.1.2.2 Physical adversarial examples 

Adversarial attacks described above mainly refer to 
a setting where attackers have the ability to update 
the inputs with the only constraints that perturba-
tions were imperceptible for a human supervisor. 
This setting has some limitations when data are pro-
cessed after acquisition, as it often happens in com-
puter vision:  a model may be trained to recognize 
a certain type of objects using a large collection of 
digital images, but the end application would involve 
a camera acquiring and processing on-the-fly imag-
es. In the last couple of years, it has been extensive-
ly demonstrated that adversarial examples could be 
transferred to the physical world [208], [209]. This is 
mainly done through the alteration or the creation of 
objects with specific features that are misclassified 
by a DL model trained to recognise them after acqui-
sition by a camera.

The generation of successful physical adversarial 
attack is particularly challenging due to the loss of 
sensitivity of adversarial perturbations when they 
are subject to minor transformations [210] either 
happening in the physical environment, such as 
lighting variations, change of angles, motion blur-
ring, etc. or in the acquisition phase, such as filter-
ing or resizing. An interesting workaround consists in 
including these transformations in the optimization 
scheme, either in the iterative process like for the 
expectation-over-transformation (EOT) attack [211] 
that alternates between gradient steps and random 
transformations, or adding terms in the loss function 
that constrain the perturbations to be physically re-
alisable [20].

3.1.2.3 Countermeasures to adversarial attacks

In parallel of the development of adversarial at-
tacks, defensive measures to make these systems 
less vulnerable have been developed [212]. This has 
led to a cat-and-mouse situation between offen-

sive and defensive adversarial ML, which is for now 
taking place in the ML research community, but is 
expected to develop into a more typical cybersecu-
rity situation between adversaries and defenders in 
the future. A short overview of the main techniques 
developed in the ML community is given in the fol-
lowing. Adversarial attacks may be counteracted by 
approaches to make the ML model more robust and 
resilient to adversarial examples. The solutions pre-
sented in the literature, especially in the last years 
in relation to DL models, may be categorised in two 
strategies: acting on the data or acting on the model. 

Acting on data can take place at training of inference 
time: Adversarial training [213] consists in introduc-
ing adversarial examples generated using classical 
attacks into the training dataset to improve the ro-
bustness of the model [154]: the model integrates 
the variability added by the adversarial perturbations 
in the model. The resulting model is less subject to 
adversarial attacks, and is able to correctly handle 
adversarial inputs generated using substitute mod-
els [214]. Once the model is trained, a second action 
to mitigate the risk of adversarial attacks consists in 
performing data sanitization, which is used to detect 
and reject samples that are too far from the training 
data distribution [215]. For computer vision DL mod-
els, the use of generative networks has also been 
proposed to identify and reject adversarial exam-
ples prior submitting them to the model [216], [217]. 
These two approaches techniques have nonetheless 
strong limitations, adversarial training protects the 
model only against a limited set of attacks, and has 
a significant impact on the training performances, 
both in terms of accuracy and training time. As for 
data sanitization, the full check can also be compu-
tationally expensive, with limited effectiveness de-
pending on the kind of attacks.

Actions on the model mainly aim at increasing the 
robustness of the model by making changes in the 
training algorithm. In this frame, a classic technique 
called regularization appears to improve the general-
ization capacity of the model by adding penalty terms 
to the cost function forcing the parameters of the 
models to exhibit desirable properties, like smooth 
decision boundaries, and to increase the resistance of 
the model to attacks on unknown data [218], [219]. 
Defensive distillation [220] is also used to smooth the 
outputs of the model, and avoid hard decision bound-
aries that are exploited by many adversarial attacks. 
These defences are however heuristic, with no formal 
guarantees on convergence or robustness properties. 
Formal verification approaches [221], [222] are being 
more and more popular in the research community, 
and have demonstrated convincing results. Their use 
in AI systems for AV is nonetheless premature due 
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to the low scalability of these techniques. Finally, ML 
ensembles have also been exploited to improve se-
curity against evasion attempts, e.g. by implementing 
rejection-based mechanisms or secure fusion rules 
[170], [223], [224], here again with an additional 
computational cost.

3.1.3 AI-based physical attacks against 
autonomous vehicles
Several examples of physical adversarial attacks on 
AI components of semi-autonomous cars were re-
ported in recent years. DARTS [225] (Deceiving Auton-
omous caRs with Toxic Signs) targets the traffic-sign 
recognition functionalities of autonomous cars. The 
method includes a pipeline for upscaling adversarial 
perturbation in such a way it becomes printable, and 
has been evaluated on real-size printed signs to fool 
a classifier getting images from a front-facing cam-
era in a real vehicle. The adversarial creation pipe-
line proposed for DARTS has been extended [226] to 
deceive a commercial car perception system in re-
al-world driving conditions, with improved random 
augmentation techniques and the ability to create 
perturbations that are tailored to speed limit traffic 
signs and, therefore, less perceptible to a human 
viewer. The pipeline allows for robust production and 
evaluation of printing-size adversarial signs in black-
box models. Spoofed and clean signs were positioned 
around the track, and were perceived by the traffic 
sign recognition system of the car driving around the 
track. Results showed that the altered signs were not 
only misclassified, but also caused some unexpected 
behaviours of the vehicle.

Another example of an attack consisted in deceiving 
Tesla cars into accelerating well past a speed limit 
[227]. By slightly elongating using black tape the mid-
dle line in the "3" on a 35-mph (around 56 km/h) speed 
sign, the system predicted a speed limit of 85 mph 
(around 137 km/h). In another work [228] focusing on 
the popular external ADAS Mobileye, the researchers 
injected spoofed traffic signs to assess the influence 
of environmental changes (e.g. changes in colour, 
shape, projection speed, diameter and ambient light) 
on the outcome of an attack. To conduct this experi-
ment in a realistic scenario, they used a drone to carry 
a portable projector, which projected the spoofed traf-
fic sign. Their experiments show that it is possible to 
fool Mobileye so that it interprets the drone projected 
spoofed traffic sign as a real traffic sign.

A research group  from  Tencent  Keen  security  lab 
performed  a  comprehensive  study  of  reverse en-
gineering  for  finding  security  flaws  in  a  Tesla car 
[229]. Among other things, they found weaknesses 

in the perception systems of the vehicle. They were 
able to trigger the auto wipers by projecting noise on 
an electronic display placed in front of the vehicle, 
thus fooling the visual sensor of the system. They 
also investigated the lane detection system: it was 
demonstrated that after application of aggressive 
blur to a traffic lane the perception system might not 
detect it, and that fake lanes might be produced by 
placing certain stickers on the road (the latter was 
not demonstrated yet in real driving conditions). In 
this situation, a human driver would have probably 
noticed the perturbation, but would have relied on 
common sense to react properly. 

A recent work has also demonstrated that the steer-
ing angle predicting systems of an autonomous car 
is vulnerable to adversarial evasion attacks at op-
eration time [230]. The authors have adapted the 
Carlini & Wagner attack to change the predicted 
steering direction.

3.2 Attack scenarios related to AI 
in autonomous driving
Considerable research effort is being invested in 
identifying AI security issues and vulnerabilities for 
AVs, recommending potential mitigation techniques, 
as well as highlighting the potential impacts on the 
vehicle itself and related infrastructures becoming 
compromised. Various threats associated with the 
different sensors, controls, and connection mecha-
nisms have been identified. In addition to the vul-
nerabilities specific to ML systems discussed in the 
previous section, AI-related security issues are tak-
ing advantage of the more classical hardware and 
software vulnerabilities present in digital systems, 
extending standard attack vectors. More precisely, 
some of these security issues and vulnerabilities 
usually mentioned include:

• Sensor jamming, spoofing and blinding/saturation: 
sensors may be blinded or jammed. In this way, 
the attacker may manipulate the AI model, feed 
the algorithm with erroneous data or intentionally 
provide scarce data and thus diminishing the ef-
fectiveness of automated Decision-making. Stem-
ming from the first attempts [17], recent works 
have demonstrated for instance the possibility to 
saturate [18] or spoof [202] LiDAR sensors and its 
underlying ML method for data interpretation.

• DoS/DDoS attacks: disrupting the communication 
channels available to an AV makes it essentially 
blind to the outside world. It has a direct impact 
on its availability and hinders operations needed 
for autonomous driving. The objective of DDoS at-
tacks is to disrupt such communication channels.
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• Manipulating vehicle communications: hijacking 
and manipulating communication channels have 
a severe effect on autonomous driving operations, 
allowing an adversary to modify transmitted sen-
sor readings or falsely interpret messages coming 
from road infrastructure.

• Information disclosure: given the abundance of 
(personal and sensitive) information stored and 
utilized by vehicles for the purpose of autonomous 
driving, including critical data on the AI compo-
nents , a particular motivation emerges for po-

tential adversaries to gain access to this type of 
information and cause a data breach.

3.2.1 Attack scenarios

Five hypothetical scenarios are presented in this sec-
tion, to illustrate the exploitation of AI vulnerabilities 
in an automotive context using both classical cyber-
security and AI-specific vulnerabilities.
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Adversaries introduce physical perturbations on the road markings to deceive the model into perceiving wrong information 
about the environment. This includes alterations, placement of stickers, or projection of light on the painting of the road lanes 
or on road signs (stop signs, speed limit signs, etc.). These carefully crafted patterns lead to a misclassification of objects or 
symbols by the perception component, and subsequently to misbehaviours of the AVs. 

IMPACT

Medium - High: The impact depends on the target markings, and the role that it plays in other autonomous driving functions. 
Misclassification of markings can easily generate safety issues, triggering misbehaviours in autonomous navigation functions 
endangering road users’ safety and leading to driver, passenger, or pedestrian deaths.

EASE OF DETECTION CASCADE EFFECT RISK

Easy - Medium - Hard: Depending on the nature of the 
attack, the alterations could be detected easily, or on the 
contrary remain undetected by human eyes before an 
accident occurs. 

Low: The perturbation is local, and may affect only the cars 
passing by the modified marking.

ASSETS AFFECTED STAKEHOLDERS INVOLVED

Markings recognition algorithms
Sensors
Vehicle functions

OEMs 
Road infrastructure 

ATTACK STEPS (SAMPLE BASED ON A REAL-CASE ATTACK SCENARIO)

1.  The attacker first analyses the capabilities of the targeted versions of cameras and AI-based image classifier and designs 
an adversarial attack able to alter the outputs. This phase may require trying multiple perturbation patterns or display 
parameters. The attacker needs to perform some physical experimentation as well to ensure that the attack will succeed. 

2.  At a next step, the attacker performs the alteration of the targeted marking or traffic sign to cause misclassification by the AV.
3.  Due to the added perturbation, targeted autonomous cars passing by the altered marking or traffic sign will erroneously 

classify it into the attacker’s chosen class (e.g. interpret a stop sign as a speed limit sign) and react accordingly (e.g. reduce 
speed instead of stopping the vehicle).

RECOVERY TIME / EFFORT GAPS AND CHALLENGES

Medium: Sensor fooling attacks can go unnoticed. Once 
detected, modified markings or traffic signs can be reverted 
in hours.

Markings and traffic sign authentication
Design of robust AI models
Collaboration of vehicles

COUNTERMEASURES

1. Hardening against adversarial examples.
2. Use of hardware redundancy mechanisms.
3. Use of data redundancy mechanisms, such as multiple sensors. 
4.  Perform data validation, for instance by comparing sign information collected by sensor with information from digital maps 

stored in the vehicle.
5. Use V2X communication to receive read sign information.

Attack scenario 1: Adversarial perturbation against image processing models for street sign recognition 
and lane detection
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An adversary discovers a remotely exploitable vulnerability in the vehicle’s head unit (HU). The attacker exploits this 
vulnerability over Internet to compromise remotely the HU of vulnerable vehicles. Once inside the HU, the attacker performs 
lateral movements gaining access to the in-vehicle network. On the other hand, the attacker may have direct access to the 
internal network during the car maintenance. If the car's internal network does not authenticate well its components, injecting 
a tampered module can do the trick better than hijacking an internet connection.
From that advantageous point, the adversary performs a man-in-the-middle attack on the state representation of the 
environment outputted by the perception module. We assume that the attacker can only add small perturbations to the state 
values to avoid detection. To select the right perturbations, an adversarial attack on the reinforcement learning model used to 
select the right behaviour to adopt considering the state of the environment is designed, leading to a change of behaviour of 
the autonomous cars.
Examples of attacks include replacing a braking command emitted when a stop sign is detected, by an acceleration command 
and allowing for a turn even if an obstacle is present on the trajectory.

IMPACT

High: The impact depends on the specific misbehaviour generated in the system. If the systems in charge of the vehicle 
actuators are targeted, the potential impact is very high, as the vehicle might be driven to perform unsafe manoeuvres (like 
emergency braking).

EASE OF DETECTION CASCADE EFFECT RISK

Difficult: the adversarial ML attack is carried out within the 
in-vehicle network, where the attacker has a more fine-
grained control over the AI inputs and their actions go easier 
un-noticed by the human operator.

High: In this scenario, the initial entry point of the attack is 
a remotely exploitable vulnerability that can be triggered 
from Internet. The adversary could easily automate this, 
potentially affecting an entire fleet of vulnerable vehicle at 
international level.

ASSETS AFFECTED STAKEHOLDERS INVOLVED

Motion planning algorithms
Vehicle functions

OEMs
Road infrastructure 
Mobile operators

ATTACK STEPS (SAMPLE BASED ON A REAL-CASE ATTACK SCENARIO)

1. The attacker first identifies and finds the way to exploit remotely a vulnerability on a HU service reachable from Internet. 
2. Once the HU is compromised, the attacker finds the way to move laterally and gain access to the in-vehicle network.
3. Man-in-the-middle attacks are used to hijack the data input by AI components.
4.  The attacker analyses the AI model used and launches an adversarial machine learning attack manipulating the planning 

module output.

RECOVERY TIME / EFFORT GAPS AND CHALLENGES

High: If no Over-The-Air (OTA) update mechanism is in place, 
the patching of vulnerable vehicles can take a considerable 
amount of time and effort.

Agile patching mechanisms
Robust ML

COUNTERMEASURES

1. Follow well-known cybersecurity principles, to protect against the elements of the cyber chain that do not relate to AI.
2. Hardening against Adversarial Machine Learning.
3. Use of hardware redundancy mechanisms.

Attack scenario 2. Man-in-the-middle attack on the planning module.
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Autonomous cars in circulation are indeed constantly sending information to the company, in particular in edge-case situations 
where the model encountered a high uncertainty on the decision to take. Edge cases can be exploited by malicious actors to 
inject unexpected behaviours inside models using update of the AI models of AVs regularly done by manufacturers. To do 
that, an attacker could create a sign that has the shape of a stop sign, and has the word “SHOP” written on it. Humans would 
not consider the sign as a real traffic sign, but AVs may consider it, and adopt a safe approach and stop, while triggering an 
anomaly. The anomaly could be corrected by a human operator, associating in the model the traffic sign “SHOP” with the 
action “DO NOT STOP”. Repetitions of the same operation with different vehicles by the attacker could be done to increase the 
likelihood of integration in the model. After deployment of the update on vehicles, the attacker could simply put a sticker to 
replace the “T” into a “H” on any stop sign to cause accidents.

IMPACT

High: The impact depends on the specific misbehaviour generated in the system. If the systems in charge of the vehicle 
actuators are targeted, the potential impact is very high, as the vehicle might be driven to perform unsafe manoeuvres (like 
emergency braking).

EASE OF DETECTION CASCADE EFFECT RISK

Easy - Difficult: the poisoning attack could be easily 
detected with a robust validation process of anomalies 
returned by autonomous cars. Once validated, the detection 
inside the model could be difficult.

Medium: Once the update deployed, the entire fleet of 
vulnerable vehicle at international level would be affected. 

ASSETS AFFECTED STAKEHOLDERS INVOLVED

Decision Making algorithms
Vehicle functions

OEMs
Road infrastructure 

ATTACK STEPS (SAMPLE BASED ON A REAL-CASE ATTACK SCENARIO)

1.  The attacker first identifies a pattern that is close enough to a sign to be misinterpreted by the system while being at the 
same time easily identifiable by a human operator.

2.  The attacker undertakes driving experiences including the pattern, in such a way that it is associated to an action that differs 
from the one of the traffic sign.

3.  The attacker relies on the fact that the system will raise a warning that will be operated by a human operator that will 
consider the pattern as a false positive and update the model to take into account this edge case.

4. After update of vehicles, the attacker modifies the targeted traffic sign to deceive the AV into doing a wrong action. 

RECOVERY TIME / EFFORT GAPS AND CHALLENGES

 High: Detecting the erroneous update could take some time. Agile patching mechanisms
Robust machine learning

COUNTERMEASURES

1. Hardening against Adversarial Machine Learning.
2. Use of hardware redundancy mechanisms.
3. Authentication of the signs to the vehicle

Attack scenario 3. Data poisoning attack on stop sign detection.
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In this scenario, an adversary may discover a remotely exploitable vulnerability and deploy malicious AI firmware from back-
end servers. This could be initiated by OEMs employees (e.g. developers) or by external attackers capable of penetrating back-
end servers. Malicious OTA (Over-the-air) updates of the AI models could then be executed so that AVs think it is a legitimate 
one, as it is initiated from a trusted server. The attack might be used to make the AI “blind” for pedestrians, by manipulating 
for instance the image recognition component in order to misclassify pedestrians. This could lead to havoc on the streets, as 
autonomous cars may hit pedestrians on the road or crosswalks. Given that such OTA updates are being pushed at scale to the 
entire fleet of vehicles of particular model/brand, it is easy to envisage that the scenario involving the entire fleet may have 
detrimental safety impact.

IMPACT

High – Crucial: Remote servers might communicate with numerous vehicles at the same time. Thus, compromising the AI 
models of such a centralised server could affect the entire ecosystem, including passengers’ safety.

EASE OF DETECTION CASCADE EFFECT RISK

Medium: Remote servers should have enough resources to 
implement advanced monitoring techniques. However, the 
deployment of many remote servers increases the attack 
surface to be protected.

High: Such attacks are highly-scalable as they can be 
executed remotely and based on the compromised AI models 
they can affect a fleet of vehicles instantly.

ASSETS AFFECTED STAKEHOLDERS INVOLVED

OEM Back-end system
Software and Licenses
OTA Updates 
Vehicle functions
Information (User, Device, Keys and Certificates)

OEMs

ATTACK STEPS (SAMPLE BASED ON A REAL-CASE ATTACK SCENARIO)

1.  To perform this attack scenario, the attacker needs first to penetrate the targeted OEM back-end server. This may be 
carried out by leveraging a known vulnerability of used software, a misconfiguration on the server side or by spoofing the 
administrator account for instance.

2.  Once the attacker gets access to the OEM back-end server, the attacker can request the execution of an OTA firmware 
update of the AI models or the image recognition component for a fleet of given vehicle models/brand. To this end, the 
attacker follows the same steps required to perform a legitimate OTA firmware update.

3.  Upon receiving the OTA update request, vehicles acknowledge and accept the request as it is initiated by a legitimate OEM server.
4.  Next, the attacker uploads a rogue firmware of the AI models on the OEM back-end server and launches the OTA update 

process to deploy this firmware. 
5.  Once the rogue firmware is installed on smart cars, the attacker can take remote control of a fleet of vehicles by exploiting 

a backdoor introduced in the rogue firmware or by adversely affecting the expected behaviour of all vehicles.

RECOVERY TIME / EFFORT GAPS AND CHALLENGES

Medium – High: Depending on the nature of the deployed 
firmware, cancelling the update by returning back to the retro 
version can be challenging if the attacker was able to change 
AI models update related information (e.g. certificates, policies) 
or the image recognition component that utilizes real-time 
data. Use of logging can help to identify the attack origin.

Lack of validation mechanisms for the inputs of the AI system
Lack of awareness and knowledge
Lack of a secure boot process
Lack of proper product lifecycle management

COUNTERMEASURES

1. Regularly assess the security controls and patch vulnerabilities.
2. Deploy Intrusion Detection Systems (IDS) at vehicle and back-end levels.
3.  Introduce a new device or software change into the vehicle only according to an established, accepted and communicated 

change management process. 
4. Consider establishing a CSIRT.
5. Apply security controls at back-end servers.
6. Establish an incident handling process.
7. Incident report to back-end servers.
8. Conduct periodic reviews, of authorization and access control privileges for instance.
9. Software authenticity and integrity checked before installation.
10. Use of secure OTA firmware updates.
11. Protect OTA update process.
12. Use of secure boot mechanisms.
13. Application of security controls to back-end servers.
14. Apply least privileges principle and use individual accounts to access devices and systems.
15. Maintain properly protected audit logs.
16. Allow and encourage the use of strong authentication mechanisms.

Attack scenario 4. Attack related to large-scale deployment of a rogue firmware after hacking OEM back-
end servers
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An adversary may jam wireless sensor and communications producing radio interferences to disrupt wireless networks 
so the sensors cannot receive messages and in general, vehicles cannot emit or receive V2X messages. Additionally, an 
adversary may also spoof the communications by emitting false signals (e.g. GNSS-like signals, with the intent to produce 
false location-based information in the victim receiver). The malicious signals may also be exploited to affect adversely the 
communication channels of wireless sensors. For example, the objective in the latter case may be to deplete battery life or 
even to jam the communication channel so that the sensors will not be able to send back their readings. Both examples have 
a direct impact on availability. This will cause problems to the AI models that depend on the targeted sensor and hence in the 
related functionalities of the vehicle. On the other hand, in case of GNSS spoofing, the AI algorithms are fed with purposefully 
erroneous data and false decisions will be taken regarding the vehicle functionalities. 

IMPACT

High – Crucial: Modern vehicles are fully equipped with a multitude of sensors in order to be able to perform autonomously 
all driving functions (e.g. sensing, detecting objects, etc.). Thus, through sensor jamming an adversary may inject unwanted 
signals into the communication channel and block/disrupt the connection of sensors with the related AI algorithms. In the case 
of GNSS spoofing, the AI models are fed with false and potentially malicious data that affect the decision-making processes 
and the relevant functionalities of the vehicle including passengers’ safety. 
With this type of attack, either jamming and/or spoofing, the attacker may influence the control of the AV. This may lead, for 
example, to different situational awareness understanding, provoke false collision warnings, choose wrong location/positioning 
of the vehicle and thus generate safety issues.

EASE OF DETECTION CASCADE EFFECT RISK

Medium: A jamming and/or spoofing attack does not require 
any advanced type of hardware or software to be mounted. 
Typically jamming and/or spoofing attacks are hard to detect, 
they do however have detrimental effects on the functionality 
of the vehicle. 

High: Sensor networks are prone to jamming mechanisms. 
These signals can entirely engage the channel so that 
authentic communications cannot take place or the packets in 
transmission be corrupted. This attack affects the AI models, 
the decision algorithms and hence the vehicle functionalities. 
Spoofing can impair the AI models due to the injection of 
unreliable data.
Such attacks are highly-scalable as they can be executed 
remotely and affect a variety of vehicles functionalities.
In the context of this type of attacks, other vehicles that 
communicate with the attacked vehicle may be also affected 
since the V2X communications are influenced and in case of 
spoofing wrong messages may lead to unwanted collisions. 

ASSETS AFFECTED STAKEHOLDERS INVOLVED

Software (e.g. AI models, decision making algorithms)
Vehicle functions
Sensors for AVs
Communication systems
GNSS
Mobile networks/systems

OEMs
Service providers

ATTACK STEPS (SAMPLE BASED ON A REAL-CASE ATTACK SCENARIO)

1. The adversary identifies security vulnerabilities in sensors and GNSS signals.
2.  The adversary exploits these vulnerabilities remotely by injecting unwanted signals into the communication channel or disable 

sending/receiving messages. Moreover, spoofers overpower relatively weak GNSS signals with radio signals carrying false 
positioning information.

3.  Once the sensor is compromised, the attacker can block the sensors (data are blocked or disrupted from successful transmission) 
and hence affect the functionality of the decision algorithms that the vehicle uses to perform the corresponding functionalities 
(e.g. obstacle detection, lane departure etc). Additionally, once the GNSS signal has been spoofed and the vehicle starts receiving 
erroneous data, then the AI techniques that are based on positioning functionalities are adversely affected. 

4.  The attacker may take over control of the AV. For example, this may lead to different situational awareness understanding, 
provoke false collision warnings, choose wrong location/positioning of the vehicle and thus generate safety issues.

RECOVERY TIME / EFFORT GAPS AND CHALLENGES

Medium – High: Depending on the nature of the attack 
recovery time depends on the vehicle and service providers’ 
ability to identify, isolate and address the attack. The 
response time for the resolution of this attack will be 
proportional to the time taken to resolve the situation. Having 
the required technical tools to identify fake signals may 
significantly reduce recovery time and efforts.

Lack of validation mechanisms for the inputs of the AI system
Lack of awareness and knowledge
Lack of authenticity
Lack of encryption
Lack of security by design
Lack of information sharing 
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COUNTERMEASURES

1. Power measurements (e.g. higher transmitted power).
2. Advanced interference mitigation technologies.
3. Building security directly into the GNSS satellites (authentication services).
4. Receiver featuring spoofing/jamming detection capabilities.
5. Security by design in sensors and receivers.
6. Regularly assess the security controls and patch vulnerabilities.
7. Strong user authentication mechanisms.
8. Deploy Intrusion Detection Systems (IDS) at vehicle.
9. Disaster recovery plan.
10. Consider establishing a CSIRT.
11. Establish an incident handling process.
12. Apply least privileges principle and use individual accounts to access the vehicle systems.
13. Maintain properly protected audit logs.
14. Analyse if possible attack modes and models in order to develop defence techniques.

Attack scenario 5. Attack related to sensor/communication jamming and GNSS spoofing.

3.2.2 Illustration: Fooling a traffic sign 
recognition system
A short experiment is provided to illustrate the im-
plementation of an attack performed in the context 
described in attack scenario 1. We implemented two 
practical adversarial attacks of an AI model for traffic 
sign recognition (TSR), responsible for the detection 
and the identification of traffic signs along the road. 

In this illustration, we develop a custom detection 
system based on the DL based architecture YOLO 
[76] to perform traffic sign recognition, using an im-
plementation of the YOLOv5 framework [231]. For 
our application, the model is trained on the German 
Traffic Sign Detection Database (GTSDB) [106]. The 
model is tested to make sure the performances of 
the model were good on previously unseen images. 
We implemented two attacks to fool the outputs of 
the TSR system. As described in Section 3.1, a dis-
tinction is made between adversarial attacks oper-
ating at the level of digital systems (referred in the 
rest of the section as “digital context”) and those ap-
plied in the physical environment (referred as “phys-
ical context”). 

3.2.2.1 Overflow attack in the classical context

The overflow attack consists in making the system 
outputting a large number of detections of signs in 
the current frame. It is performed in the digital con-
text, where adversaries have access to the system in 
which the AI component is evolving, and aim to up-
date the numerical values that are being inputted to 
the detection systems. This happens if the attacker 
gained access to the internal system, either remote-
ly (e.g. using network access) or physically (e.g. using 
a vulnerability in the infotainment system), and in-

stalled a malicious piece of software running on the 
internal computer of the car. Here, we consider that 
the attacker is looking to apply the minimal pertur-
bation possible to make the adversarial image looks 
similar for a human user.

Figure 9 shows the result of the attack on a driving 
scene extracted from the GTSDB dataset: more than 
100 signs are detected all over the image with high 
confidence, in contrast with the two signs present in 
the scene. This attack impairs the availability of the 
TSR system that can either affect the responsiveness 
of the autonomous system if not handled correctly, 
or make the vehicle ignore actual signs present on 
the road, leading to wrong behaviours of the vehicle.

3.2.2.2 Class spoofing attack in the physical 
context

Class spoofing consists in making the system out-
putting a different category for the signs that are 
detected, the localization of the sign remaining iden-
tical. In the physical context, the attacker can only 
alter the environment in which the car is evolving, for 
example adding stickers, projecting light, or physical 
altering signs. The goal is to cause the TSR system 
to produce invalid, yet plausible output, and thus to 
induce a wrong behaviour of the vehicle. The sys-
tem cannot detect the attack, reducing its integrity. 
The car may adopt a behaviour prescribed by the 
attacker. In the physical context, the attack can only 
alter the environment in which the vehicle evolves. 
For practical reasons, this is translated in this experi-
ment as a constraint that the attack can only modify 
a few pixels of the image on a sign, the same way 
a sticker would do.
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Figure 10 shows the result of the attack on a driv-
ing scene extracted from the GTSDB dataset: adding 
a sticker-like perturbation located on the sign fools 
the TSR system that correctly predicts the locali-
zation of the sign but misclassifies the sign. This 
attack impairs the integrity of the system, with po-
tential high impacts on the behaviour of the vehicle 
in the driving environment.

Figure 9. Visualization of the overflow on a TSR 
model. (Top) Normal output of the TSR system: 
the two signs are detected as expected. (Middle) 
Amplified intensity of the perturbation added to 
each pixel of the image. (Bottom) Output of the 
TSR system on the adversarial image: more than 
100 signs are detected with high confidence.

Figure 10. Visualization of the class spoofing 
attack on a TSR model. (Top) Normal behaviour 
of the model: the “keep right” sign is correctly 
detected. (Bottom) Output of the TSR system on 
the adversarial image: the sticker-like perturbation 
on the sign makes the model incorrectly classify 
the sign as “priority road”.
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4. AI CYBERSECURITY CHALLENGES AND 
RECOMMENDATIONS FOR AUTONOMOUS 
DRIVING

4.1 Systematic security validation 
of AI models and data
Data plays an important role when building and val-
idating AI systems, at the core of the learning pro-
cess of ML models. AVs have multiple sensors col-
lecting each second millions of values describing the 
environment according to various modalities. These 
large sets of data are feeding complex AI models 
that are dynamic in nature. In this context, system-
atic data validation is of paramount importance in 
order to prevent unexpected behaviour due the wider 
variety of situations that vehicles may encounter in 
the real world, including attacks based on the alter-
ation of inputs such as poisoning and evasion at-
tacks. Companies and research groups are not only 
relying on real-world static data sets, but also make 
use of simulation environments to get large volumes 
of realistic yet simplified data, adding another layer 
of concern in terms of security. More globally, the 
definition of data governance adapted to the par-
ticularity of data used in autonomous driving should 
be implemented to understand, among others, who 
owns the data, who has access, or the appropriate 
usage of the data.

A particularity of AI models is that they can change 
their behaviour overtime, implying that security and 
robustness assessments do not just take place at 
a given point in time during their development, but 
instead should be systematically performed through-
out the AI model lifecycle. This is of particular impor-
tance when considering the proliferation and use of 
pre-trained models from third parties, and the fact 
that AI models are constantly learning from newly 
acquired sets of data. The systematic validation of 
AI models is a challenging issue for the cybersecurity 
of AVs, ensuring security in the AI systems in auton-
omous cars to make sure model updates do not add 
vulnerabilities that may be exploited by attackers. 

In this context, it is important to ensure that the se-
curity and robustness of model updates is system-
atically assessed and tested, as part of a broader 
systematic validation and testing process to ensure 

their quality and reliability in relation to data de-
pendencies, model complexity, reproducibility, test-
ing, and changes in the external world. This also in-
cludes the data used by the ML models, which may 
eventually contain unexpected patterns, not present-
ed in the training datasets, unintentional (change of 
environments, etc.) or be intentionally altered to con-
duct a cyberattack.

RECOMMENDATIONS
• Establish monitoring and maintenance processes 

for the AI models either proactive or reactive. 

The proactive monitoring works to identify how to 
improve continuous learning to provide software 
updates. The reactive approach entails detecting 
a wrong output and identifying its causes to un-
derstand how the method or the outputs can be 
rectified. In this context, the same situation can be 
checked before or after software updates to check 
if there is a faster way to take decisions.

• Conduct systematic risk assessments considering 
specifically the AI components throughout their li-
fecycle.

• Adopt resilience mechanisms preparing alterna-
tive plans and incident response activities in case 
of incidents.

• Establish feedback loops of testing vehicle opera-
tions as a continuous monitoring process and les-
sons learned activities. 

• Establish audit processes to support forensic anal-
ysis after incidents and address relevant concerns 
for the future.

For example, keep audit trails to later check how 
a decision was made and perform post incident 
analysis, keep logs of serving data since data 
might delay things and lead to accidents. This is 
related both to information security incidents and 
traffics accidents.

• Introduce additional validation checkpoints to limit 
the impact of erroneous data. 
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For example, potential solutions of additional val-
idation mechanisms for continuous validation of 
data.

4.2 Supply chain challenges 
related to AI cybersecurity 
The security of the software and hardware supply 
chain is of paramount importance in cybersecuri-
ty. The supply chain should be strong, capturing all 
the involved parts in order to ensure security of the 
software. Supply chain management is a well-known 
challenge acknowledged by the majority of involved 
actors and stakeholders. The absence of proper se-
curity policies and sufficient strategies across the 
supply chain of AI components results in a lack of 
resilience and the presence of potential security 
breaches in systems. Ensuring proper governance of 
security policy across the supply chain requires in-
volving stakeholders as diverse as developers, man-
ufacturers, providers, vendors, aftermarket support 
operators, end users, or third-party providers of on-
line services.

Recently, the situation has become even more com-
plicated as AI systems are becoming increasingly 
involved in autonomous vehicles, and have an addi-
tional impact on the supply chain and its complexity. 
Security aspects in all the phases of the AI lifecycle 
introduce new security risks in the automotive sup-
ply chain. For example, checking for security issues 
(intentional such as backdoors and non-intentional) 
in pre-trained models is challenging considering the 
complexity and the opaqueness of AI models. Be-
sides, the distinct open-source culture in ML limits 
the tracing of such assets, pre-trained models be-
ing available online and widely used in ML systems, 
without guarantee on their origin. 

Another particularity of the supply chain security is-
sue in AI for autonomous driving is connected to the 
specific way in which the automotive industry works 
with respect to the digital components of the vehicle. 
Whilst there are new players (e.g. Tesla) that inte-
grate themselves the electronic control units (ECUs), 
most manufacturers rely on ECUs from third parties, 
resulting in a vehicle having dozens of ECUs from 
several manufacturers [232].  

Accordingly, security processes of the supply chain 
should capture the specific AI features and become 
dynamic and flexible in every potential change. De-
pending on the architecture of autonomous cars, 
highly accessible components and lack of robust 
AI models may entail significant concerns with re-
spect to cybersecurity. It could be very beneficial to 

use secure embedded components to perform the 
most critical AI functions, similarly to the usage of 
hardware security module for cryptography. Having 
unauthorized access to an unsecured element could 
lead to threats for the whole automotive ecosystem. 

Cybersecurity is a shared responsibility between all 
stakeholders, including OEM, Tier 1 and Tier 2 enti-
ties, who should address security concerns to mit-
igate the different risks and ensure people’s safe-
ty. The current draft of the UNECE regulation [2] 
specifies that OEMs, suppliers and service providers 
should consider cybersecurity concerns and imple-
ment appropriate security controls. However, the 
security regulations and good practices should take 
into account the specific features and the relevant 
impact of the involved AI models. 

RECOMMENDATIONS
• Establish a proper AI security policy across the 

supply chain, including third-party providers.

• Ensure governance of AI security policy across the 
supply chain.

• Identify and monitor potential risks and threats re-
lated to AI in autonomous driving.

• Develop an AI security culture across the supply 
chain, involving all the stakeholders. 

• Request compliance with regulations in the auto-
motive sector across the supply chain.

4.3 End-to-end holistic approach 
for integrating AI cybersecurity 
with traditional cybersecurity 
principles
The push to implement AI security solutions in auto-
motive systems responds to rapidly evolving threats 
and raises the need to secure AI systems in relation 
with the other components and services of the au-
tonomous car. In particular, AI cybersecurity should 
be integrated with traditional cybersecurity principles. 

Increasing dependence on AI for critical functions 
and services in AVs will not only create greater in-
centives for attackers to target those algorithms, but 
will also step up the potential for each successful 
attack to have more severe consequences [233]. 
Best practices for secure systems often ignore that 
an AV is a multidimensional environment with differ-
ent components that may themselves include one 
or several AI models of different natures. In light of 
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this, ensuring cybersecurity in AVs requires an end-
to-end holistic approach taking into account all the 
different components, the diversity of AI systems, 
and their interactions. Building security as an inte-
grated procedure that involves various systems and 
takes into account all the phases of the AI systems is 
vital for the resilience of systems to potential secu-
rity breaches. Applying defence-in-depth strategies 
plays a significant role in measuring and enforcing 
security requirements. Integrating AI cybersecurity, 
for all the steps of the AI lifecycle, with traditional 
security principles is very important, since a miss-
ing vulnerability may jeopardize the security of the 
whole autonomous vehicle. 

Even if a system is designed and developed with 
security in mind, systems change over time with 
additional equipment, software and functionalities. 
This situation imposes the need for an integrated 
approach that needs to be maintained and updated, 
capturing all the systems, the AI models and their in-
teractions. Towards this end, companies and organ-
izations involved in the automotive sector need to 
update their cybersecurity policies accordingly.

There is a crucial need for a holistic approach in-
tegrating AI with traditional cybersecurity principles 
as well as a thorough documentation of AI systems 
in automotive context. Contrary to classical secure 
software development, for which “prepared state-
ments”, to avoid for example SQL injection attacks, 
are readily available, security patterns for the design 
and implementation of AI-based components are 
missing. This is nonetheless needed for the AI design 
and development: Securing AI pipelines throughout 
the whole AI lifecycle requires tamper-resistant im-
plementations of each stage, mutual authentication 
between all the stages and confidentiality/integrity 
at the interfaces between the different stages. In the 
automotive sector, this translates into recommend-
ing tamper-resistant sensor, strongly authenticated 
components of the on-board network, adversarially 
trained on-board models, limited plasticity after de-
ployment, etc.

RECOMMENDATIONS
• Establish security processes in the organizations 

integrating AI particularities.

• Promote security by design principles when it 
comes with deployment and development of AI in 
automotive context.

• Promote the use of standardised components and 
homogeneous AI solutions in automotive context.

• Ensure proper governance of AI cybersecurity pol-
icy in the organizations defining specific roles and 
responsibilities. 

• Create an AI cybersecurity culture across the auto-
motive ecosystem.

• Promote innovation and R&D activities for incorpo-
rating AI cybersecurity in the organizations.

• Promote dialogues between industrial actors to 
ensure interoperability in the development of AI 
solutions.

• Promote security patterns for the design and im-
plementation of the AI-based components.

• Promote research projects on the security of AI 
components for autonomous driving.

• Implement solutions that can detect if not prevent 
the potential jamming of sensors.

4.4 Incident handling and 
vulnerability discovery related to 
AI and lessons learned
In many organisations, although cybersecurity teams 
know the main threats to which many components 
and systems in AVs are exposed, often people only 
become truly aware of the importance of security 
when they suffer an incident or discover a vulner-
ability. Despite the vast publicity regarding security 
vulnerabilities, the related awareness and commit-
ment to security remains significantly low, especially 
with regards to vulnerabilities of AI systems. 

It is worth highlighting that, in many cases, vulner-
ability discovery may influence the security prac-
tices more than the a-priori information about the 
existence of potential high risks. Optimistic bias is 
the main reason for this situation, stemming from 
the belief of many people that they are less likely 
to experience a negative event, because either they 
do not have the sufficient knowledge on actual risks 
or they are motivated to underestimate the risks. In 
this context, the optimistic bias may have a robust 
negative impact on the perception of AI security risks 
in the automotive. 

The absence of AI security awareness and an inad-
equate AI security training also aggravate and per-
petuate this bias. In this context, given the lack of 
information about the expected outcomes of a po-
tential breach, the case studies and the first-hand 
accounts of security incidents and other security 
shortcomings will require significant amount of time 
to be properly resolved using current practices. It is 
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therefore essential to apply real-world training in or-
der to deal with the negative AI security impacts of 
optimistic bias.

A clear and established cybersecurity incident han-
dling and response plan should be considered, taking 
into account the increased number of digital compo-
nents in the vehicle and in particular, the ones based 
on AI. An AI incident could be considered as an inci-
dent in which the behaviour of the vehicle as dictat-
ed by the planning module of the AV system is sus-
ceptible to cause harm, either due to an intentional 
malicious attack or due to the failure of an element 
in the ML pipeline. This may include potential viola-
tions of privacy and security, such as an external at-
tacker attempting to manipulate the model or steal 
data encoded in the model, or incorrect predictions 
that can cause dangerous situations in which a traf-
fic accident may happen. 

A well-structured and domain-specific plan of ac-
tion that immediately acts following an AI security 
breach or failure is essential in order to reduce the 
incident costs and damages to the organizations and 
the end users of the autonomous cars. There should 
also be a way to supervise AI systems and detect 
bad predictions (e.g. by comparing it against some 
ground truth such as maps and/or V2X messages 
from external sources). Frameworks further incorpo-
rating AI weaknesses (e.g. red-teaming) or penetra-
tion testing considering AI specific issues should also 
be considered. 

The apparition of new actors with no previous expe-
rience in security incidents raises the need to build 
a cybersecurity culture to be able to comprehend the 
potential vulnerabilities and the underlying threats 
inherent to their systems, in order to know the cor-
rect steps to secure systems and to prioritize actions 
in case of incident. All stakeholders involved in the 
automotive supply chain should then stay aware of 
the growing AI threat landscape, in order to be able 
to map the risks and attacks to business operations. 
Lastly, processes for lessons learned when experi-
encing an AI security incident can also stimulate the 
creation of a security program across the whole sup-
ply chain.

RECOMMENDATIONS
• Adapt incident response plan to include AI particu-

larities.

• Establish a culture of learning from AI security in-
cidents.

• Promote knowledge sharing.

• Promote the use of mandatory standards for AI 
security incidents reporting.

• Organise disaster drills, involving high manage-
ment, so that they understand the potential im-
pact in case a vulnerability is discovered.

• Develop simulated incidents for raising awareness 
and knowledge in this sector.

4.5 Limited capacity and expertise 
on AI cybersecurity in the 
automotive industry
The absence of sufficient security knowledge and 
expertise among developers and system designers 
on AI cybersecurity is a major barrier that hampers 
the integration of security in the automotive sector. 
Many organisations associate security directly to the 
extent to which developers use security practices. 
The lack of AI knowledge by developers is then the 
source of several issues that may allow attackers to 
easily target AI components of AVs. First, the devel-
opment processes do not include security tests and 
code analysis specific to AI components. Second, AI 
system designers tend to have a limited expertise 
on the domain of application, leading to poor design 
decisions.

As a result of these security shortcomings, AI secu-
rity is often an afterthought, and AI security controls 
implemented as add-ons without full integration 
may arise, leading to complex, expensive, and hard 
to maintain architectures. This situation is fertile 
grounds for security vulnerabilities. Even if an AI 
system is designed and developed with security in 
mind, the volatility of AI systems, that need to be 
constantly updated with additional equipment, soft-
ware and functionalities, imposes the need for AI 
security-aware security teams in order to authorize 
and track the changes as well as to evaluate po-
tential AI security issues as part of a configuration 
management process.  

Most people are not trained either properly or not 
at all in order to be able to recognize the security 
implications of AI software requirements. They do 
not know the security implications of the way that 
AI software is modelled, architected, designed, im-
plemented, tested and prepared for distribution and 
deployment. Under these circumstances, AI software 
may not only deviate from its predefined security re-
quirements but also these requirements may have 
been inadequate in the first place for its use in AVs. 
Without such knowledge, developers may not even 
recognize the security implications of certain design 
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and implementation choices, and that their mistakes 
and omissions in the development phase can lead 
to exploitable vulnerabilities in the software when it 
becomes operational.

The lack of project management to support and en-
courage the developers and designers to become AI 
security-aware through education and training is an 
aspect of paramount importance. Companies may 
also lack the resources to offer AI security training, 
developers may remain focused mainly on their pri-
mary functional task and security ignoring the AI 
cybersecurity features. Even if developers want to 
bear security in mind, sometimes there are budget 
and time related limitations posed by the top man-
agement and other stakeholders. It is then essential 
that project managers obtain an appropriate level of 
AI cybersecurity education and training in order to 
be less likely to make decisions that undermine the 
security of AVs.

Security awareness should not stop with the de-
velopers and managers, since it is important for all 
members associated with an AI software to receive 
security training to ensure that AI cybersecurity is 
a core concern in AVs. AI cybersecurity training of 
all involved parties will also help to make cyberse-
curity more prominent during discussion, planning 
and board meetings towards a secure automotive 
sector. In order to avoid damages that may dete-
riorate the reputation of the companies, the entire 
organisations must be aware of the importance of 
the implementation of AI security in AVs, and the 
consequences of not considering it as a priority ob-
jective. People should be trained and understand 
that cybersecurity of AI is not only about countering 
ML adversarial attacks, but also includes (together 
with adversarial mitigation measures) aspects from 
traditional cybersecurity, e.g. forensics, incident re-
sponse, etc. In the automotive industry the AI sys-
tems should be designed by teams where automo-
tive domain experts, ML experts and cybersecurity 
experts can collaborate.

RECOMMENDATIONS
• Integrate AI cybersecurity particularities in the 

whole organization policy.

• Create diverse teams consisted of experts from 
ML related fields, cybersecurity and the automo-
tive sector. 

• Involve mentors assisting the adoption of AI secu-
rity practices in the organizations. 

• Launch security education and training focused 
on AI systems cybersecurity and their integration 
across the automotive ecosystem.

• Deploy tools inside the continuous integration 
toolchain system that allows automated security 
testing of each pull request. This allows for an im-
proved response and a better vulnerability reme-
diation as they appear.

• Bring industry expertise to academic curriculum by 
welcoming lead people in the field to guest lectures 
or by defining special courses that tackle this topic.
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