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Problems

It is difficult to conceive models of human capabilities such It is difficult to conceive models of human capabilities such 
as:as:

••Signal processing, Signal processing, 

••Phonetic and lexical decoding, Phonetic and lexical decoding, 

••Syntactic processing and semantic interpretationSyntactic processing and semantic interpretation. 

It is necessary to conceive models because we cannot It is necessary to conceive models because we cannot 
reproduce the complexity of human processingreproduce the complexity of human processing

Conceiving good models is difficult because knowledge is Conceiving good models is difficult because knowledge is 
limitedlimited
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Applications 

Command and control

Dictation, Transcription (broadcast news)

Robust systems (car, house, ...)

Spoken dialogues (call routing, question answering, 
customer relation services, opinion analysis, directory 
assistants health care)

Voice browsers (meeting browser), Information retrieval

Multimedia systems

Translation
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Modeling

If analytic models are incomplete because of 
lack of knowledge, then statistical models can 
be useful, because they are built from corpora 
and may have a complete coverage of the 
observations.

Statistical models are often built on top of 
structural models
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The recognition paradigm

Person-machine Communication (PMC) can be seen as an exchange of 
information coded in a way suitable for transmission through a physical 
medium. 

Coding is the process of producing a representation of what has to be 
communicated. The content to be communicated is structured. The 
basic component is a vocabulary of signs or symbols. By concatenation 
of symbols, words and sentences are obtained.

Concatenations are subject to constraints described by knowledge 
sources (KS). 

Coded messages undergo further transformations that make them 
transmittable trough a physical channel.
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The decoding process

Dictation and interpretation systems perform a decoding 
process using KSs to transform the message carried by a 
speech signal into different levels of symbolic 
representation. Decoding can produce word sequences or 
conceptual hypotheses. 

The KSs used  by machines in the decoding process are only 
models of the ones used by humans for producing their 
messages.
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Sources of imprecision

The decoding process has to deal with imprecision due to

• distortions introduced by the transmission channel, 
• the limits of the knowledge used,  
• the intrinsic ambiguity of many  spoken messages. 

Imprecision too has to be modeled

To some extent, ambiguities can be reduced by exploiting 
message redundancy.
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Model structures

Model structures are described by formal grammars

Imprecision is described by augmenting grammars with 
probability distributions leading to statistical models (soft 
constraints)

Different types of models are integrated into a single 
statistical KS

Generation of word hypotheses is a search for the most 
likely match between a description of the input signal and a 
word sequence satisfying the constraints represented in the 
integrated KS
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Feature extraction

inputinput
SAMPLING

FOURIER 
TRANSFORM

FEATURE EXTRACTION

SEQUENCE OF VECTORS OF 
ACOUSTIC PARAMETERS

corpus 
acoustic data

training

neural network
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Basic approach
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Spectral representation

Classical Fourier Transform computes the spectrum of a 
signal weighted by a window.

where f(.) represent signal samples, W(n) represent window 
samples  and  F(.) represent spectral samples.

The window is defined as follows:

The spectral energy is given by:

And the log spectrum is:
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Filterbank Based Spectral Analysis

•∫ 2

•∫ 2

•∫ 2

Signal Input
Filterbank
Output
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Filter bank

A filter-bank defines a time-frequency distribution in which 
an energy is associated with the central frequency of each filter 
output. Such an energy, for the j-th filter, is computed as follows:

where  represents the frequency response of the j-th filter.
Following an ear model, the magnitudes of their frequency response
may have a triangular shape
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homomorphic analysis 

 

FFT Ln | o | FFT-1
 

Signal 
 
f(.) 

Spectrum 
 
F(.) S.(.) 

Cepstrum 
 
Cs (τ) 

Spectrum can be obtained by mel-scaled filters to model ear 
sensitivity

This is done by adding a filter bank after the FFT
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Mel scaled filters

freqfreq

A set of filters is considered spanning the spectrum of the speech 
signal 

They have triangular frequency response 

Bandwidth increases logarithmically with frequency  qualitatively 
reproducing ear frequency sensitivity
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relation between linear frequency scale 
and Bark scale 
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MEL frequency scaled cepstral coefficients
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The future : feature combinations

Source Glottis
Vocal
Tract

Lips
Radiation

Nasal
Tract

E(z) G(z) V(z) L(z)

N(z)

S(z)
e(t) g(t) v(t) l(t) s(t)

n(t)

The source generates a sequence of pulses regularly spaced in time for 
voiced sounds and a white noise for unvoiced sounds. The glottis acts as 
a low-pass filter with a cutoff frequency around 100Hz for male speakers 
and 175Hz for female speakers.

Speech Production model
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Linear Prediction

The vocal tract can be approximated by an all-pole filter and the 
lips radiation by an all-zero filter or a Moving Average (MA) 
model. The nasal tract has a fixed model connected to the vocal 
tract one for producing nasalized sounds. Thus, an Auto-
Regressive Moving Average (ARMA) model reliably 
approximates this speech production model. In general, the ARMA 
model is approximated by an Auto-Regressive (AR) model that is 
simpler and has parameters that are easy to estimate. For the sake 
of simplicity, the source signal e(t)  can be white noise.

In practice, the second summation reduces to bg(t) and coefficients
are estimated by MMSE
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Perceptual Linear Prediction

In PLP analysis, an auditory like spectral representation is derived 
by warping the short-time spectrum of speech according to the 
Bark frequency scale of human hearing.

Procedure continues by convolving the warped spectrum with a 
critical band frequency masking curve, modifying the amplitude 
according to a typical equal loudness curve and compressing the 
modified spectral amplitude by a cubic-root non-linearity. 

The auditory-like short-term spectrum  is subsequently 
approximated  by a low order autoregressive model. Many 
speaker-dependent components are reduced and robustness is 
introduced to slowly varying additive and convolutional errors.
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Perceptual Linear Prediction

S i g n a l

F F T

|  •  |2

|  •  |1 / 3

I D F T

 L P C
L e v i n s o n - D u r b i n

C r it ic a l b a n d  in t e g r a t io n

E q u a l lo u d n e s s  p r e e m p h a s is

I n t e n s it y - t o - lo u d n e s s  c o m p r e s s io n

P L P
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Ear models

Cochlear
Filter  1

Cochlear
Filter  i

Cochlear
Filter  M

Cochlear
Filter  2

x(t)
Zero-Crossing
Detector

Peak Detector

Interval
Histogram

Intensity
Information

Frequency
Information

Basilar Membrane

Auditory Nerve Fibers
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Time-frequency resolutions
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F ig u r e  1  -  T im e - fr e q u e n c y r e p r e se n ta t io n s
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TRAPS

sp eech   seg m en t

sh o r t- te r m  F o u r ie r
t r a n sfo r m

a u d ito r y m o tiv a ted
fi l te r in g

p r o jec t ion  on  a  se t
o f ba s is  fu n c t ion

F ig u r e   2  -  a cou s tic  fea tu r es
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TRAPS

At OGI it is observed that TRAPS-estimated features contain 20% 
more information than MFCCs. Gain is shown by computing the 
mutual information between phones and features. It is suggested to 
use them in combination with MFCC for DSR. The features 
considered are manner of articulation:

nasal, fricative, flap, stop , silence

and are computed after signal reconstruction at the server side. They 
are computed with a MLP having 10 inputs . The is one MLP per 
critical band. Training is performed on noisy TIMIT. Latency is 90 
msecs and the total number of parameters is 19000.
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Multi-resolution analysis scheme

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 

8 bands *       
8 sam ples 

8 bands * 16 sam ples 2 bands *      
32 sam ples 

=  

Speech signal

256 sam ples 
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Time resolution

0KHz

1KHz

3KHz

4KHz
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Node scheme

h1(-n)

h(-n) 

cj+1 

↓2

↓2

dj

cj

∫ −⋅⋅== dtkttfttfkc j
j

kjj )2(2)()(),()( 2
, ϕϕ

∫ −Ψ⋅⋅=Ψ= dtkttfttfkd j
j

kjj )2(2)()(),()( 2
,



31Seminario Bordoni   Rome March 11th, 2008

Acoustic measures
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hybrid systems

frequencies

energies

memory

acoustic parameters
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Central frequency adaptation

freqfreq

{ }
{ }

),,,/)((ˆ,ˆ maxarg
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HggAPg
g

γ
γ

γγ Θ=

g : new filtersg : new filters

γγ : new means: new means

H : alignmentH : alignment

A linear transformation of the filter central frequencies is 
performed. Parameters are estimated from data
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Comments on features

Many feature sets have been proposed (review Speech 
Communication 2007)

The choice of features is constrained by the acoustic
modelling choice

Possible improvements are obtained with

•feature transformation 

•feature integration
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Endpoint Detection

Consists in selecting a look-ahead method based on the fist 
cepstral coefficient and a filter which computes the values of an 
objective function :

where h is the filter impulse response and g is the energy 
function.

W is 7 or 13; h(i) is [-f(i), f(i)]
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VAD

In (Kingsbury et al., 2002)  the following  approaches are considered 
for VAD detection :

TRAPS with critical band trajectories and median filters

TRAPS with posterior probability scaled into likelihood and used
with five state HMM

five state HMM representation for speech and for non-speech are 
trained using 

• log-energy

• degree of voicing )t(r
)t(rmax)t(v

0

i
i

=

autocorrelation at lag i.
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Speech decoding

An effective decoder can be designed by considering the 
sequence of acoustic observations 

as the output of an information channel that receives at the 
input a sequence of symbols representing the intention of 
the speaker. If these symbols are words, then they can be 
represented by the sequence

a....a...aaA Nn21=

W W W Wk K= 1 . . . . . . . .
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reconstruction of the coding process

INFORMATION 
SOURCE 

INFORMATION 
CHANNEL 

W A 

the objective of recognition is to reconstruct W based on the 
observation of A. 
The source and the channel contain KSs. The source generates a 
variety of sequences W with a given probability distribution.
The channel, for a given W, generates a variety of A with a given 
probability distribution.

Considering the following coding scheme :
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Decoding as search
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W

computed by the 
language model LM

computed by the 
acoustic model AM

W : sequence of hypothesized words             
A: acoustic evidence

Search for a sequence of words W such that
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Multi-expert decision model

{ }Max P A W P W
W

log ( / ) log ( )+ β

Decision is based on the weighted sum of expert scores:

score of the acoustic 
expert 

score of the linguistic 
expert

fudge factor
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Speech understanding

)CWPr()W/APr(maxarg
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Designing KSs

Knowledge can be manually compiled or  obtained by 
automatic learning from a corpus of data. 

The best results so far have been obtained using component 
models having a simple, manually decided structure. 

Statistical parameters of these models are estimated by 
automatic training from corpora. Complex knowledge 
structures  are obtained by composition of  basic models.
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word hypothesis generation

signal  
corpus

acoustic models

sequence of acoustic 
descriptors

text     
corpus 

language modellexical models

INTEGRATED 
NETWORK

WORDS

HYPOTHESIS 
GENERATION

training training
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Performance indicators

A first requirement is coverage. The system has to be able to 
recognize virtually all the sentences that can be pronounced.

Another requirement is precision. KSs and methods for their 
use should produce the lowest  recognition or understanding 
error rates.

A third requirement is acceptable computational complexity, 
both in terms of time and space. Having responses close to 
real-time is a necessary condition. Linear time algorithms are 
preferred.
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left to right models

Si Sj
Pij

Pii

γii(a)

γij(a)

Pii + Pij = 1

γij(a) is the probability of observing a during transition

i           j 
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left to right models alternate representation

Pij

Pii

γi(a)

Pii + Pij = 1

γi(a) is the probability of observing a in state i
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left to right models with skips and emplty transitions

Si Sj
Pij

Pii

γii(a)

γij(a)

Pii + Pij = 1

γij(a) is the probability of observing a during transition

i           j 
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Discrete and continuous HMMs

)a,,(N=)a( ijijij σμγ

¡Ç )x(bor)a(b=)a(
Q

1=q qijqijijγ

Continuous models

a is a vector of continuous parameters, function can be
gaussian

Discrete models

a is a symbol representing a vector of parameters or a set 
of Q symbols describing various aspects of the vector{ }qx
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Mixture densities

Pii

If the components of a are statistically independent, then

)a(gii λλ
)a(gij λλ

λaλa

‡” )a,,(Nw=)a(
G

1=g ijgijgijgij σμγ

Pij
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Semicontinuous HMM

Models share the same mixture  of G gaussians. 
What makes the difference between 
distributions are the weights.

∑ σμ=γ
=

G

1g
ggijgij )a,,(Nw)a(

g2
)ga(

g
gg e

2
1)a,,(N σ

μ−

πσ
=σμ

λ

λ



51Seminario Bordoni   Rome March 11th, 2008

Word models
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Grammars
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Context dependent models : triphones

 state
S3

S2

S1

 state
S3

S2

S1

 state
S3

S2

S1

(w)

ah

(n)

(f)

ah

(r)

(k)

ah

(l)

Allophones of ah
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Basic problems

1 Scoring problem

Given the observation sequence A and a model, how 
do we efficiently compute P(A|model)?

2 Alignment problem

Given the observation sequence, how do we choose the 
most likely state sequence that generated it?

3 Learning problem

How do we adjust the model parameters to maximize
P(A|model)?
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The scoring problem

Given a fixed state sequence then:Tt1 I,......,I,.....,II =

)a(b....)a(b....)a(b)a(b),I|A(P TTtt2211 ⋅⋅⋅⋅⋅=λ

TI1TItI1tI3I2I2I1I1 q.....q.....qq)|I(P
−−

⋅⋅⋅⋅⋅⋅π=λ

)|I(P),I|A(P

)a(bq.....)a(bq..

...)a(bq)a(bq)a(b)|I,A(P

TTTI1TItttI1tI

333I2I222I1I111

λ⋅λ=

=⋅⋅⋅⋅⋅

⋅⋅⋅⋅⋅⋅π=λ

−−

∑ λ=λ
Iall

)|I,A(P)|A(P

Calculation requires steps

TKT2 •

TKT2 •
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Recursive computation

Assuming models are left-to-right, define

Forward coefficient:

Backward coefficient

Complexity : K T
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Phonetically Tied Mixture (PTM)

All the allophones of the same phoneme share the same 
set of gaussians but with different weights. For all 
distributions of allophones of phoneme f :

Continuous densities outperform conventional tied 
mixtures (SCHMM) by about 20%

∑
=

σμ=γ
fK

1fk
fijkfijkfijk

f
ij )a,,(Nw)a(
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HMM training

Start with an arbitrary segmentation of the sentence

w ah n

Basic recursion

Estimate model parameters based on samples assigned to each 
distribution

Perform recognition with only the sentence model to obtain new 
alignment
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HMM training

Consider the function :

and the auxiliary function:

It is possible to prove that:

P p d( ) ( , )ϑ ξ ϑ ξ= ∫
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Baum-Welch algorithm

Consider the following transformation:

This is a growth transformation for the function P :

By successively applying the transformation, a sequence

that monotonically increases the objective 
function P can be found.

Γ( ) arg max ( , ' )
'

ϑ ϑ ϑ
ϑ

= Q

P P{ ( )} ( )Γ ϑ ϑ≥

ϑ ϑn n= −Γ( )1
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Maximum Likelihood Estimation

Let                be the set of the parameters of all the HMMs

Let                be the sequence of all the training data

Let                be the set of possible sequences of T states

for model 
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Maximum Likelihood Estimation
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Maximum Likelihood Estimation

By deriving                  with respect to each               and    

using Lagrange multipliers, the following re-estimation 
formula is obtained: 
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Maximum Mutual Information Estimation

Given a statistical model of a speech unit w (e.g. a word or a 
phoneme) characterized by a set of statistical parameters 
specifying its statistical distributions,  and a sequence X of 
acoustic descriptors (feature vectors or symbols), the posterior
probability that model has produced the observed sequence X  
can be expressed as:

P m X
P X m P w

P X m P ww
w

w
w V

ϑ
ϑ

ϑ
( / )

( / ) ( )
( / ) ( ')'

'

=
∑
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MMIE

Effective training algorithms exist for MLE that are not applicable to 
MMIE for which classical gradient descent algorithms with related 
convergence problems are used. Furthermore, the presence of the 
denominator makes exact computation practically impossible if  the 
size of V is too large.

For what concerns the convergence speed of  gradient descent, 
various solutions have been proposed that are reviewed in 
(Normandin et al., 1994). For what concerns approximations of the 
denominator for the case of large vocabularies, various solutions 
have been proposed using the N-best lists of word hypotheses 
(Chow, 1990), phoneme lattices (Normandin et al., 1994) or word 
lattices (Valtchev et al., 1994).
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minimum phone error or classification error  
(MPE/MCE)

 
MPE reduces the training set estimated phone error (in a word 
recognition context) and has been shown to outperform MMIE 
.  
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Language modeling
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STOCHASTIC LANGUAGE MODELS
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The purpose of LM is to compute the following probability 
:
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HISTORY APPROXIMATION

the history ( W 1 ,......,Wi-1 ) is represented by an equivalence CLASS S(W 1 
,......,Wi-1) 

S can be the state of a finite state automaton
or a word, a pair of words, a class, a pair of classes.....

P W P W P W S W Wi
i

n
i( ) ( ) ( / ( . . . . . . ))= ∏

=
−1

2
1 1
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History approximations

BIGRAM PROBABILITIES

TRIGRAM PROBABILITIES
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Maximum likelihoodMaximum likelihood
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P w x
f w x if c wx
K x P w if c wx c x
P w if c x
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Backing-off scheme for a bigram (w/x)

BIGRAM PROBABILITY ESTIMATION

f’ is the discounted frequency distribution λ is the zero 
frequency probability, c are counts
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Trigram Probabilities

P w xy q f w xy q f w x q f w( / ) ( / ) ( / ) ( )= + +1 2 3

the q coefficients can be determined by  
interpolation methods
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Part Of Speech (POS) models

P W P W g P W g P g g gi
i

n
i i i i( ) ( / ) ( / ) ( / )= ∏

=
− −1 1

2
1 2

g can be a syntactic class like a noun or any class like a 
semantic one or one determined by clustering words

Wi can also be a multiword sequence
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Entropy of a text
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Training set entropy
the source entropy of a set of all phrases of n word length or less
is measured using an LM
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Ergodic source and LOGPROB

If the source is ERGODIC and its statistical properties do not vary with 
time, then all the sequences with the same length  have the same
probability and the entropy becomes equal to:

If ENTROPY is estimated using a corpus with n words, then:

If probabilities are computed with a model then rather than entropy we 
have a LOGPROB:
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Measuring Model Quality

Using a validation set and re-rank the N-best
Perplexity PP
measures how well a LM M predicts an unseen text  T using  
the cross entropy of the distribution functions of M and T:

P P TM H P PT M( ) ( ; )= 2
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Perplexity

Perplexity can be roughly interpreted as the
geometric mean of the branchout factor of the 
language

nnwLP wPPP
n

/1
1

)( )(2 1 −==
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Head trigrams

The recently elected President decided to appoint a new Defence Minister

President appoint Defence_Minister

Pr(Defence_Minister | President, appoint)
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ModelsModels

Word clustering

n-gram class models are obtained by partitioning a 
vocabulary of V words into C classes.

Pr( / ) Pr( / )Pr( / )w w w c c ck
k

k k k
k

1
1

1
1− −=
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HMM W1

HMM W2

P(W1)

P(W2)

SEARCH
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W1

W2

W3

P(W1)

P(W2)

P(W3)

P(W1/W1)

P(W3/W1)P(W2/W1)

P(W2/W2)

P(W1/W2)

P(W3/W2) P(W1/W3)

P(W3/W3)

P(W2/W3)
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NON-SPEECH EVENTS

non-speech events are represented by a 
non speech model at the beginning of 
each word or before the root of a tree

winon speech 
model
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11

21 22

12

state  score

11 s11(t1)

21 s21 (t1)

t1



85Seminario Bordoni   Rome March 11th, 2008

11

21 22

12

11 s11(t1)

21 s21 (t1)

11 s11(t2)

22  s22(t2)

21  s21(t2)

12  s12(t2)

t1 t2
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Trigrams require repetitions  and more links in 
the search network

the black dog

a cat

the black dog

a catblack
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Beam search trellis

time
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MULTIPLE QUEUE BEAM SEARCHMULTIPLE QUEUE BEAM SEARCH

internal state queue                      final state queue

δ δ

max max

max - max -
ACTIVE STATES
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PROBLEM!

• For every word final state in the active queue there are 
|W| links to the beginning of each word

• |W| is the vocabulary size

P(W1/Wk)

P(Wn/Wk)

end node 
of Wk
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BBN modification of Turing-Good 
method (more robust)

• P(w/x) : bigram prob
• P(x) : unigram prob
• P(ε/x) : prob of a previously 

unseen word occurring in 
context  x

• n(x) sum of all counters c(w/x)
• r(x) number of unseen words

P x
r x

n x r x

P w x
c w x

n x r x
unseen words
P w x P x P w
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W1

W3

P(W1)

P(W3)

P(W3/W3)

P(W2)

P(ε/W1)

P(W3/W1)

P(ε/W2)

P(ε/W3)
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tree lexical representation

tcl t
uw

er iyeh

r
iy

two

tree

tree
space saving, automaton compression, use of  

triphones results in a network increase 
because of differences in the right context
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Word lattice

time

WORD LATTICE

word hypotheses have fuzzy left 
bound  (even with CMU CD models)
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Word boundary effects

For each word, a number of possible beginnings 
and ends are considered. 

They are represented by different connectors linked 
in a consistent way
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Riccardi’s pivot 
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DEMO  LUNAVIZ

OK 340
HS 267
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History

1941 Dudley patent

1951 Dreyfus-Graf and Smith

1952 first demo Davis et al.,

1962 Sakai and Doshita

1968 Slustker & Vintsjuk

1969 Vicens & Reddy

1970 De Mori et al, Pools, Bridle, Sakoe &Chiba

mid 70s DARPA PROJECT
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History

1975 IBM system (Bahl, Jelinek)

1975 Dragon system (Baker)

1975 Beam search (Lowerre)

1980 IBM dictation machine

ATT telephone applications

Artificial Neural Networks reappear
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History

1990 DARPA-NIST dictation

ATIS

switchboard

2000 broadcast news

speech-to-speech translation

spoken document retrieval, indexing

spoken language understanding
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Problems

Switchboard experiments have shown that WER is
still high (> 30%) for conversational telephone speech

WER is high in presence of noise

WER is high for non-native speakers

Information Retreival using speech starts perfoming
much worse than using text if WER goes beyond 25%.
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SPEAKER ADAPTATION

Attempts to improve performance
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IntroductionIntroduction

• Language and acoustic models are fully specified 
by a  set of parameters. 

• If the  models provide  a correct formulation of the 
reality and their parameters are  known, 

then :

the expected minimum recognition error rate is the expected minimum recognition error rate is 
achieved by selecting a  hypothesis with the well achieved by selecting a  hypothesis with the well 
known known BayesBayes decision ruledecision rule
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Decision rule

∃ a r g m a x ( / ) ( )W P A W P W
W

= ⋅Θ Γ

)W(P)W/A(PmaxargŴ
W

⋅=

A decision rule of the type:

Minimizes the expected error count on W

But, in practice, we can only compute:
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Questions about the rule

• parametric forms (statistical models) for probabilities are 

assumed 

• parameters are estimated from data depending on

•the type and size of the training set, 

• training conditions regarding 

•microphone, 

•channel, environment,

•task-dependent phonetic and linguistic facts
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Model parameter uncertainty

σσ

μμ
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Need for adaptation

• Mismatch between training and testing conditions

• mismatch between speakers used for training and testing

•Speaker Independent (SI) models do not represent the true 
distributions of any speaker. These models suffer serious 
degradation when tested on speaker/environments not represented 
in training (BBN ARPA 95)

It is desirable to continuously adapt to an evolving environment:
• model parameters 
• feature extraction or normalization
• both
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Adaptation process

adaptation algorithm

adaptation samples

μi2

σi2

μi1

σi1
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Noisy channels and condition mismatch

Training conditions

y1(t) = h1(t)*s(t)+ n1(t)

Testing conditions

y2(t) = h2(t)*s(t)+ n2(t)
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Types of compensation

nnonparametriconparametric compensationcompensation where the features and 
models are compensated without any assumptions 
about the type of distortion,

parametric compensationparametric compensation where the structure of the 
compensation is assumed to have a functional form 
and the parameters of such a structure are estimated

sstereotereo data based compensationdata based compensation where compensation is 
performed assuming clean and noisy samples of the 
same data are available
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Adaptation modalities

bbatchatch adaptationadaptation is performed with samples of the entire 
adaptation set

incremental adaptationincremental adaptation is performed after recognition of each 
sentence or group of sentences 

SelfSelf or instantaneous adaptationinstantaneous adaptation is performed on each sentence 
before it is recognized (especially useful when there is a very brief 
interaction between the speaker and the system)

Furthermore:

in supervised adaptationsupervised adaptation the input to the algorithm includes the 
sentence transcription. Unsupervised adaptationUnsupervised adaptation adapts
automatically based on recognizer hypotheses
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Adaptation methods

NonNon--parametric approachesparametric approaches

minmaxminmax methodmethod (Merhav and Lee, IEEETSAP 1993) consists in 
adjusting model parameters in a restricted neighborhood so that 
the worst case probability of misclassification is minimized  

HMM inversion methodHMM inversion method (Moon and Wang, ICASSP95, p.145) in 
which the Baum-Welch reestimation formula is used to obtain a 
better estimation of the features. Without any restriction, this
procedure converges to the model means. The two procedures 
can be used iteratively.
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Adaptation methods

Parametric methodsParametric methods use a small set of parameters to describe the 
compensation structure which can be inferred from the test data.

(good overview in Woodland IEEE ASRU 1999)

cepstralcepstral mean normalizationmean normalization and codebook dependent cepstral
normalization, 

hierarchical clusteringhierarchical clustering, 

affine transformationsaffine transformations of features estimated, for example with  
Maximum Likelihood Linear Regression (MLLR),

Maximum A Posterior (MAP) probability estimationMaximum A Posterior (MAP) probability estimation

and various combinations of them. 
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Adaptation methods

Stereo compensationStereo compensation methods include:

signal to noise ratio signal to noise ratio cepstralcepstral normalizationnormalization, 

probabilistic optimal filtersprobabilistic optimal filters, applied in the feature space, require 
parallel recording of clean and noisy speech. (Neumeyer et al., 
1994, Rahim and Juang, 1996),

neural networksneural networks. 

Most methods compensate for non-linear distortions using  linear 
approximations.
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MAP adaptation

Just considering acoustic models,  the model parameters Θ
are random variables themselves with a given probability 
distribution g(Θ). Training can then be seen as the choice of  
Θ such that:

where A is an acoustic description of the training set. This is 
called Maximum A Posteriori (MAP) estimation. (Lee et al., 
IEEETSP, 1991)

)|A(P)(gmaxargˆ Θ⋅Θ=Θ
Θ
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MAP and MLE

{ })/(g)/A(Pmaxarg

)/A(Pmaxarg

MAP

ML

ΦΘ⋅Θ=Θ

Θ=Θ

Θ

Θ

is a prior distribution of the model parameters possibly 
with respect to a smaller set of hyperparametershyperparameters

is usually a conjugate distribution such that   belongs 
to the same family as . Under this hypothesis the Expectation 
Maximization (EM) algorithm is applicable to MAP (Gauvin and 
Lee, IEEETSAP 1994).

Φ

)/(g ΦΘ
)(g Θ

)/(g ΦΘ

)A/(g Θ
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Problems with MAP

The classical formulation requires an amount and a 
distribution of data that is rarely available in practice. 
Approximations  of the true posterior probability of  Θ given 
A are considered 

Rather that pluggingplugging into the Bayes decision rule  the model 
parameters estimated with a training procedure, Bayesian Bayesian 
Predictive Classification Predictive Classification (BPC)(BPC) assumes that the parameter 
set for the best decision lie in the neighborhoods of the 
parameters found with training and proposes to adjust the 
decision rule accordingly.
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Affine transformations

A speaker speaker independentindependent countcount yy can be computed for each 
gaussian. Let Y Y be the vector of such counts. Given a set of
speaker speaker dependentdependent countscounts rr, it is possible to estimate a 
transformation matrix AA(r)(r) and a vector B(r)B(r) such that, the
vector of the combined counts XX can be computed as follows:

XX ==AA(r)Y(r)Y + B(r)B(r)

where matrix AA(r)(r) and  vector B(r)B(r) can be determined by
iterative MLE estimation, for classes of phonemes or , if there 
are not enough data, they can be the same for all phonemes. 
Class hierarchies are also considered with thresholds set in such 
a way that for each pair to be estimated there are sufficient 
data.
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Affine transformations

There are two main forms of model-based transformation 
namely 

unconstrained (Leggeter and Woodland, 1995) 

constrained (Digalakis et al., 1995).

Many of these adaptation schemes consist in performing a linear 
transformation computed using a Maximum Likelihood Linear 
Regression (MLLR) approach (Leggeter and Woodland, 1995)

Eigenvoices
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Unsupervised adaptation

Speaker-independent observation densities have the form:

where t indicates time, s indicates a state, 

y an observation, w the weight of a gaussian in the mixture, 

m the mean and Σ the covariance matrix, 

g indicates a codebook of gaussians.

P y s p w s N y mSI t t i t
i

N w
t ig ig( | ) ( | ) ( ; ; )= ∑

=1
Σ
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Constrained adaptation

The speaker-adapted observation density is constrained by the 
fact that means and covariance matrix are linearly transformed:

which corresponds to having the speaker independent 
observations transformed as follows:

P x s p w s N x A m b A ASA t t i t
i

Nw
t g ig g g ig g

T( | ) ( | ) ( ; ; )= ∑ +
=1

Σ

x A y bt g t g= +
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Speaker normalization

Cepstral mean subtraction is a popular and simple 
feature-base normalization method.

Nevertheless, is generally agreed that one of the 
major sources of inter-speaker variability is the vocal 
tract shape. 

One consists in estimating vocal tract parameters 
(especially related to vocal tract length) and use them 
for normalization. 
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LANGUAGE MODEL ADAPTATIONLANGUAGE MODEL ADAPTATION
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methods for adapting LMs to a new domain

train a new LM if sufficient data are available

· pooling data of general model and new domain

· linear interpolation (see section on linear interpolation)

· back-off with general model

· retrieve documents and build new LM on-line

· MAP

· Minimum Discrimination Information

· log-linear interpolation

fudge factor adaptation
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Domain sub-languagesDomain sub-languages

Even a simple  bigram LM may require large amounts  of   
training  text  samples.

In  case of domain change,  adaptation  techniques allow 
to reduce the amount  of  training  material    by  
exploiting samples   of  possible close domains.   

Within a domain sub-language, variations in the language 
can be due to intra-user differences   or   topic  shifts.  
Both    phenomena  can significantly affect  the  a-priori 
probability of  the word sequences that can be    uttered.
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Topic shiftTopic shift

Topic shifts  also  affect  the  probability of words.   
For instance, inside an  x-ray report words  like   
hearth and  lungs are much more likely to occur 
after the word  chest than  leg.

User changes and topic shifts  can be coped with 
adaptation that either try to capture long-distance 
dependencies or to adjust the n-gram statistics.
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.....kw1....kw2....kw3...kw4...kw5     .... 

document 

cache

 kw1  kw2   kw3   kw4  kw5   

Topic recognition 
Language Model selection  
The selected LM replaces  

the general LM at this time 
and is used up to the end of the 

document 

The switching Language Model 
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AdaptationAdaptation

During usage of  the system new texts are 
produced which reflect the  user's language.  
These texts can be used in a supervised adaptation

Adaptation can be performed incrementally, that  
is the LM is adapted  after every entered sentence, 
or  in batch mode, i.e... after a significant after a 
suitable chunk of texts  has become available.  
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Types of adaptationTypes of adaptation

In general, topic adaptation requires incremental 
adaptation, as short term  language   changes have  to   
be  modeled.   

Domain  adaptation intrinsically needs more  data, hence 
batch adaptation is  preferable.

User adaptation can be performed in both modes if for 
instance an  a priori sample of  the user (see radiological 
reporting application) or incrementally.
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Cache modelsCache models

The first adaptable statistical LM was  based on 
the simple hypothesis that  a word used in the  
recent past is much more   likely to be used soon 
than    its overall  frequency  in an   n-gram LM  
would suggest.

Modeling long-distance  dependencies  has  been 
the  first  adaptation paradigm.
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class cache modelclass cache model

verbs

elect

arrived 

elect

nouns

president

vote

president

vote
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POS cache  (Kuhn and De Mori 88-90)POS cache  (Kuhn and De Mori 88-90)
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Bigram and trigram cache
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Interpolated estimation

)w/iw(P)w()w/(w(P 1i
1j

1i
1

j
j

1i
1i

−−− ∑ λ=

Adaptation consists in making one or more probability 
distribution or the weights varying with time (Kneser
and Steinbiss, 1993, Ney ASI97, Iyer and Ostendorf, 
1999). 
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Maximum likelihoodMaximum likelihood
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MAP Adaptation
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One model (Federico, 1996)



136Seminario Bordoni   Rome March 11th, 2008

Triggers boostingTriggers boosting

{ }
f h w

if x x AA x h w BB
otherwiseAA BB→ =

∃ ∈ ∈ ∧ ∈⎧
⎨
⎩

( , )
( , , )1

0

Trigger pairs are obtained by computing the 
mutual information between a word and words in 
the same sentence or in the dialog history :

I X Y
P X Y

P X P Y
( , )
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Constrained adaptation

Constraint-based models introduce soft partitions in the word 
space.

If the constraints are consistent, there exists a unique solution in 
the exponential family which satisfies them. 

Among all solutions including those of  other families,  the 
exponential one is the closest to the prior one in the Kullback-
Leibler sense or Minimum Divergence or Minimum 
Discrimination Information. 

If the prior is flat, then this becomes the Maximum Entropy 
solution.

The parameter space is concave (suitable for iterative solutions)

∑
∈

=
Xx )x(Q

)x(Plog)x(P)]x(Q),x(P[D
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Constrained adaptationConstrained adaptation

initial distribution

adaptation
new distribution

constraints for the 
new distribution 
are imposed by 
adaptation data
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General solutionGeneral solution
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Just-in-time language modeling

This definition comes from (Berger and Miller, 1998) who propose
to perform LM parameter estimation and adaptation at the same 
time. In processing a single utterance, a system uses its non-stop 
words to perform a query to a collection  of words or to the WWW. 
Based on the retrieved documents, a new LM is derived and used to 
adapt a static one. 

The concept is inspired by topic coherence models are proposed in 
(Sekine and  Grishman, 1995). Here keywords of previously 
recognized sentences are used for retrieving pertinent documents
from which an LM is derived and updated dynamically.
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Log-linear interpolation 
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In (Klakow, 1998), the following model is considered as 
composed by J topic models:

The simplex method can be used for finding the exponents

It can be shown that this is equivalent to impose that the model to be 
found has minimum distance w.r.t. the uniform distribution and 
satisfies the constraints that the new model has predetermined KL 
distances from each of the models. This approach has less free 
parameters to estimate w.r.t.  ME.
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Fast marginal adaptation
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(Kneser et al., 1997)

a makes reference to the adaptation data

Combination of clustering and constraint-based re-estimation of 
probabilities for adaptation is proposed in (Kneser and Peters, 
1997) where also evidence is provided that exponential models are 
superior to linear interpolation in combining multiple information 
sources. 
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BEYOND CLASSICAL N-GRAMS

Latent semantic analysis
The use of word probabilities depenent on Latent Semantic 
Analysis is proposed in (Bellagarda, 1997).

The starting point is a {|W|x|D|} matrix A of  word (in a vocabulary 
W) probabilities in each document of a collection D. 

This matrix is decomposed using Singular Value Decomposition 
(SVD) into the product of smaller matrices:  

where S(RxR) matrices is square with R=125, U  (|W|xR}, V 
(Rx|D|).

A U x S x V T=



144Seminario Bordoni   Rome March 11th, 2008

Adaptation in reduced space
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Consider a set of  vectors in reduced space with sufficient
adaptation counts counts:

And the vectors of the corresponding words before adaptation:

Classes of sematically similar words can have an affine 
transformation of the form:
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Nondeterministic stochastic automata

Variable N-gram Stochastic Automata (VNSA) with empty 
transitions compute the following state dependent probability :

Essentially partial models recognizing chunks can be placed in 
series or parallel thus allowing combining class based models, 
back-off models and variable n-gram models.

Chunks are obtained by segmenting the corpus in such a way 
that minimum  entropy is found.

A transition correspond to a word, thus adaptation is a linear 
combination of transition probabilities of a general and the 
adaptation data.  (Riccardi and Gorin, 2000).
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Recent tendencies and problems

Integration of multiple LMs and multiple features

Use context for dynamically adding OOVs

Discriminative LM training

Rescoring
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combination

•Speaker clustering and eigenvoices

•Speaker adaptive training

•Non-linear tranformations based on neural networks

•data augmentation 

•adaptation to speaker speed 
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Mixture HMM

feature extractionfeature extraction

HMMHMM

HMMHMM

HMMHMM
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Joint estimation

feature extractionfeature extraction HMMHMM

joint parameter estimationjoint parameter estimation
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Multiple recognizers

IBM proposes an architecture (Kingsbury, 2002) with multiple 
transformations and multiple classifiers (Fine et al., 2002).

Different features are used:

Full band non-compressed root cepstral coefficients (RCC)

Full band PLP 16kHzTelephone band PLP 8 kHz
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Training multiple models

The transformations for training acoustic models (Transformation
based learning) are:

VTLN . For each training speaker a VTL warp factor is selected 
among 21 possibilities +-20% linear warping. The canonical model 
after VTLN is the VTLN model.

LDA+MLLT (LDA followed by Maximum Likelihood Linear 
transformation) on each of the three set of features is applied to the 
VLT warped spectra.

A single affine transformation is computed after VLTN 
LDA+MLLT for each speaker such that the likelihood of the 
transformed features is maximizer w.r.t. the canonical (VLTN) 
model.The canonical model is then re-estimated
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Multi-channel systems

channel #2channel #2

HMMHMM

HMMHMM

HMMHMMchannel #3channel #3

channel  #1channel  #1
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Use of different recognizers

Performance analysis with multiple recognizers (Gemello, Mana, 
De Mori)

LOQUENDO 
ASR

Denoising Dim reduction

Jrasta PLP Denoising Wavelet Packet

LOQUENDO 
ASR

LIA/WATSON 
ASR

…….

Integration, Diagnosis, Definition of dialogue states
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Use of different recognizers

ANN       
ASR

Dim reduction

Denoising Denoising

Jrasta PLP Wavelet Packet

ANN       
ASR

Integration, Diagnosis

GMM
ASR

GMM
ASR

Model comparison Model comparison
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Multiple features

channel #2channel #2

HMMHMMchannel #3channel #3

channel  #1channel  #1

FEATURE

COMBINATION
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Multiple features twin model

Icassp 2008
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Log-prob

Just sum log probs of likelihood ratios for each 
frame and state to obtain observation log prob
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Results telephone speech
MEDIA  test (1377 sentences and 10434 words) log-linear combination

Feature set WER (%) Conf int (%)

MRA 33.1 0.90

RPLP 33.1 0.90

PLP 32 0.89

LLC MRA+ RPLP 28.7 0.87

LLC RPLP + PLP 27.4 0.86

LLC MRA+PLP 27.2 0.85

LLC MRA+RPLP+PLP 26.4 0.85

oracle 24.2 0.82



159Seminario Bordoni   Rome March 11th, 2008

FEATURE COMBINATION

Gabor tandem

input noise reduction concat HTK

ICI(OGI) features

Gabor tandem

Gabor filters norm and derivatives MLP PCA

Icsi/OGI
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DIMENSIONALITY REDUCTION

In order to reduce dimensionality and increase robustness, PCA 
and LDA have been performed on the whole set of tree
featuresat each time frame with a 10 ms frame rate.

PCA has been performed by transforming the 63 features in 
order to have zero mean and unit variance. Then the covariance 
matrix C  has been obtained. High correlations have been 
observed between nodes and their fathers in accordance with the
theory.
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FEATURE TRANSFORMATION

Linear transformations are reviewed in (Visweswariah et al , 2002), 
where it is proposed to express a matrix for feature or mean 
transformation as a combination of  a certain number of bases:

The bases  can be obtained from training data by finding the first 
eigenvectors of a collection of vectors representing the elements of 
speaker matrices (one per speaker), while the coefficients are found 
with MLE from test data. 

∑
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+=
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FEATURE TRANSFORMATION

A Maximum Likelihood Linear Transformation (MLLT) is a 
modeling technique which places some constraints on the gaussian
models ( IBM 2001). Multiple Linear transform (MLT) is proposed 
which allows each gaussian to have its own diagonalizing
transform. 

This transformation in feature space is called FMLLR .

Feature space normalization based on cumulative distributions is
proposed in (Sioan and Huerta, 2002) in which a sample  in the test 
is forced to be equal to the sample of the same rank in the train set. 
This transformation has to be followed by a decorrelating
transformation such as MLLT. It gives same performance as the use 
of FMLLR.
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FEATURE TRANSFORMATION

In (Deng et al., 2002) it is shown how MAP and BPC inspire a 
formulation and use of feature uncertainty.

)W(P)W/A(PmaxargŴ
W

ΓΘ ⋅=

[ ] )W(Pd)W|(p)W|A(pmaxargŴ
W

ΘΘ∫= Θ [ ] )W(Pd)|A(p)W|A(pmaxargŴ
W

ϑϑ∫=

A further assumption is made, that, for each frame, vector a(t) has a 
probability distribution p(a(t)|θ) is gaussian with mean μ(t) and 
variance Σ(t). Re-estimation formulae are provided for these 
parameters, once noise has been estimated. The use of fixed HMMs is 
now made by using μ(t) as observation and by adding th the variance 
of each model gaussian Σ(t).
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Denoising
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Noisy channels and condition mismatch

Training conditions

y1(t) = h1(t)*s(t)+ n1(t)

Testing conditions

y2(t) = h2(t)*s(t)+ n2(t)
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Only additive noise
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Denoising

Basic approaches:

•Find  useful transformations on features so that the noisy speech 
becomes closer to the clean speech,

•Use robust features (ear model) 

In the fist approach, speech enhancement attempts to derive clean 
speech from noisy speech. There are essentially three approaches.
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Denoising

•spectral subtraction (Boll 1979)

•Wiener filtering

•signal resporation by spectral mapping adaptive filtering 
techniques (e.g. Kalman), 

•all pole modeling of degraded speech combining Wiener 
filtering with LP techniques

•microphone arrays 

•Cepstral mean subtraction
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Enhancement

Let y(n,t) be the noisy signal, Y be its transform, Z be an estimation 
of the noise transform, S the estimation of the signal spectrum, s its 
inverse transform. Enhancement consists in finding the gain G(Y,Z) 
such that:

S=G(Y,Z)Y

is as close as possible to the original signal.

For every frequency band:
22

)n(Y)n(G)n(Ŝ = kkk
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Wiener filters

A Wiener filter estimates the signal by filtering the noisy signal. 

Assuming signal and noise are uncorrelated, then the filter is 
designed with the purpose of  minimizing the mean-square 
difference between the denoised signal and the noisy signal in each 
band or for each frequency sample. 

The criterion to be minimized can be expressed with the sum of the 
signal distortion and the noise residual, the fist one been 
proportional to the signal variance and the second one being 
proportional to the noise variance.
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Wiener filter

When both noise and speech FFT coefficients have gaussian
distribution, the optimal speech estimator is Wiener:
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Wiener filters

The Wiener filter has a frequency response for the n-th time sample 
and the k-th frequency sample given by:

A generalized Wiener filter contains modifications of the above 
definition.

where η(n) is an overestimation factor and β(n) is usually a 
constant (Moticek et al., 2002)
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Linear spectral subtraction
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Non-linear Spectral Subtraction

 

α(n) 

1.5 

0 10 20 SNR(n) dB 

0.001

 

β(n) 

1.0 

0 15 20 SNR(n) dB 

0.01
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Cepstral noise removal

Efficient on-line noise removal of noise from speech cepstra is 
proposed with the SPLICE algorithm (Microsoft). Without any 
assumption about how noisy cepstra are produced, non-linear and 
possibly non.stationary distortions can be considered. The basic idea 
is to learn a joint probability  of clean x and noisy speech y from 
simultaneous recording of clean and distorted speech.. 

One way to model the joint probability P(s,y) is:

P(s,y)=P(s|y)P(y)

P(s|y) will have parameters which are not a linear function of y.
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Cepstral noise removal

In SPLICE, an auxiliary discrete random variable g is introduced 
which partitions the acoustic space into regions in which the relation 
between x and y is linear, so :

A noisy signal  Y can be expressed as function of clean signal and 
noise as follows:

y=s+r(y)

Where r is a function which can be piece-wise leading to:

y=s+ gr
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Noise estimation
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Results (Aurora3)

Test Conditions WER CH0 (%) WER CH1 (%) Overall WER (%)

JRASTAPLP 1.4 (0.2) 41.3 (0.8) 21.4 (0.5) IT

JRASTAPLP+SS 1.0 (0.2) 23.5 (0.7) 12.2 (0.4) IT

MRA+PCA 0.9 (0.2)             39.4 (0.8)           20.1 (0.5) IT

MRA+PCA+SS    0.8 (0.2) 19.1 (0.7) 9.9 (0.4) IT

MRA+PCA+ST 0.9 (0.2) 23.5 (0.7) 12.2 (0.4) IT

MRA+PCA+SS   0.9 (0.2) 10.6 (0.5) 5.8 (0.3) SP

MRA+PCA+SS   2.5 (0.3) 9.8 (0.6) 6.3 (0.4) GER
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Introducing frame reliability

In (Bernard and Alwan, 2002), it is proposed to weight 
observation probabilities with an exponent which depends on the 
reliability of the received frame. 

This reliability is a function of the ratio of the likelihood of the 
first and the second candidate in the Nbest list. This is consistent 
with maximum likelihood decoding. 
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Confidence indicators

Posterior probability     P(W|A)

Comparison with anti-model

Consensus among different systems to compute the 
probability that hypothesis is correct given confidence 
features

…………. 



181Seminario Bordoni   Rome March 11th, 2008

Likelihood ratios
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Problems

Performance varies with speaker and environment 
(difficult to compensate)

Re-training or incremental training is better if possible

Voice separation and denoising are difficult problems

Applications require careful tuning 

Consider applications in which a limited amount of 
errors can be tolerated
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Evaluation
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SpeechWorks and 

Nuance Start

History of US funded speech recognition research



185Seminario Bordoni   Rome March 11th, 2008

Dictation results

Speaker independent continuous speechSpeaker independent continuous speech

Number of wordsNumber of words word error rateword error rate

6500065000 10%10%

2000020000 7%7%

15001500 2.2%2.2%

1010 0.23%0.23%
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OOV and lexicon size

Language corpus  number of distinct words

English WSJ 165000

French Le Monde 280000  

Italian Il Sole 24 ore 200000

German FrankfurterRundshau 650000
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Telephone speech

Speaker independent continuous speech

ESST (4000  words) 12-23% WER

SWB (15000 words) 26-36% WER 

Other (15000 words) 36-55%WER
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Understanding

Air Travel Information System ATIS

46 cities, 57 aerports, 23457 flights, 1700 words

year   1990 1991 1992 1993     1994

CER  33.8% 28.2% 11.1%  13.2%   8.6%
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Broadcast news

19971997 27% WER27% WER

20052005 Multiple steps multiple systemsMultiple steps multiple systems 10% WER10% WER
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