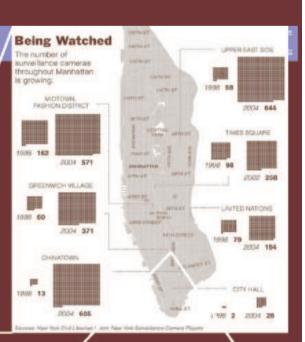


Capturing Ambient Intelligence for Mobile Communications through Wireless Sensor Networks

Pierre R. Chevillat IBM Research Zurich Research Laboratory Rüschlikon, Switzerland

e-SENSE


e-SENSE Project Presentation

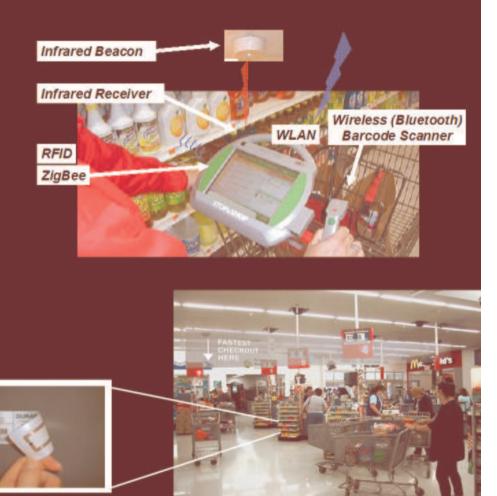
IBM Research

Data Being Captured at Increasing Spatiotemporal Resolution

- People sensors: location (inferred from that of their devices), activities (inferred from calendar and desktop information), biometrics, etc.
- Place sensors: room status (inferred from anonymous motion/sound detectors), presence (of people and things), congestion (inferred from pressure pads or camera images), etc.
- Thing sensors: location (RFID), status (monitoring sensors such as telematics, desktop), etc.
- Business sensors: context from databases (medical data, credit history, location history), context from processes

EU IST Conference

March


© 2006 IBM Corporation

User-Centric Scenario: 'Store of the Future'

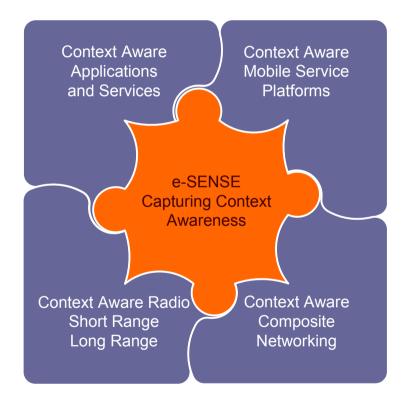
- Customer device
 - > Tablet, PDA (initially), later: smart phone

IBM Research

- Full multimedia capabilities
- Multiple communication interfaces:
 - · cellular, 802.11x, BT, ZigBee, infrared ...
- Geolocation functionality (1m accuracy, indoor)
- RFID reader
- > Digital camera / video recorder
- Shopping applications
 - > Downloaded / updated at store entrance
 - Personal shopping list
 - Display advertising
 - Location sensing direction finding
 - Event processing and correlation
 - Automatic sensor-based check out
- Tagged merchandise (RFIDs)

March 6, 2006

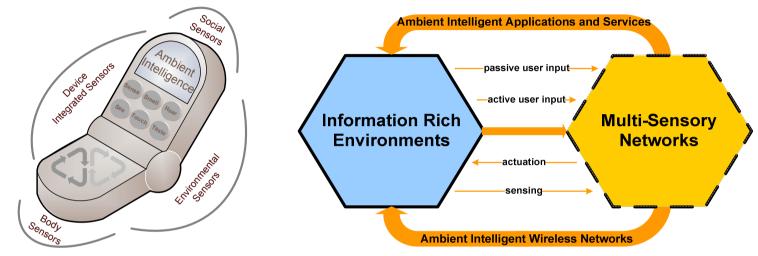
© 2006 IBM Corporation



• Application Domains:

e-sense

- Personal Service Space
 - Lifestyle Assistant
- Community Service Space
 - Wireless Hospital
- Industrial Service Space
 - Remote Asset Monitoring
- Provide the missing piece of the Beyond 3G puzzle
- EU competitiveness in WSN
- EU and International wireless standards



e-SENSE in B3G

e-SENSE

Ambient Intelligence

- Person-to-Anything (Physical) Interaction
 - leading to more natural means of interactions
- Sensor Networks (actuators and sensors) are Enablers for
 - ubiquitous computing
 - 'disappearing technologies'
- Context Information for
 - Context aware applications and services
 - Context aware communications

e-SENSE

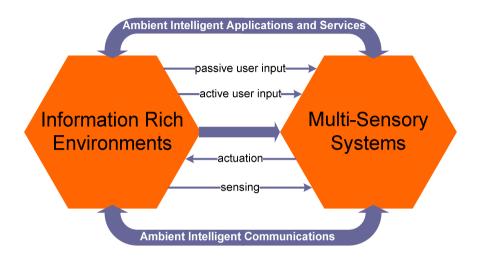
e-sense

- Long Life
 - The assumption is that recharging a sensor node is not possible (number, location, access problem)
 - Long life = months to years depending on the application
- Small Size
 - The assumption is that sensor nodes could be anywhere and 'invisible'
 - Small size = potentially less than a few cubic millimetres
- Inexpensive
 - The assumption is large scale disposable deployment
 - Inexpensive = a few cents per unit
- Integrated
 - Sensors in everyday objects, on the person and in the environments
 - Interfaces integrating sensors into B3G systems and platforms

There is a strong trade-off between performance

and these high level constraints.

It depends strongly on the application what an optimal solution requires.



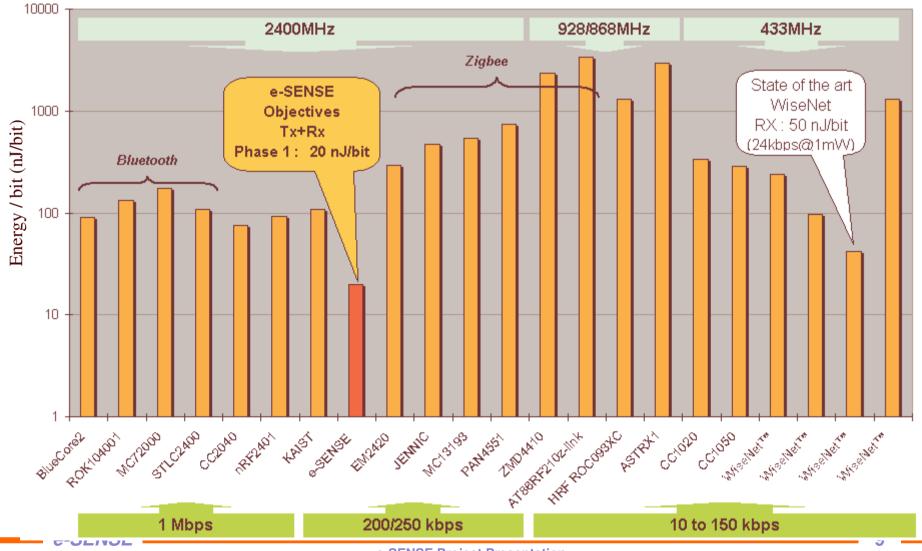
e-SENSE Overview

e-SENSE enables capturing of Ambient Intelligence for Beyond 3G Mobile Communication Systems through Wireless Sensor Networks

Project Main Objectives:

- Energy-Efficient Sensor Node and Sensor Network Architecture
- Ultra Low-Power Air-Interface Designs
- Efficient Wireless Sensor Networking Protocols
- Distributed Processing Middleware
- Validation of Key Concepts with Test Beds

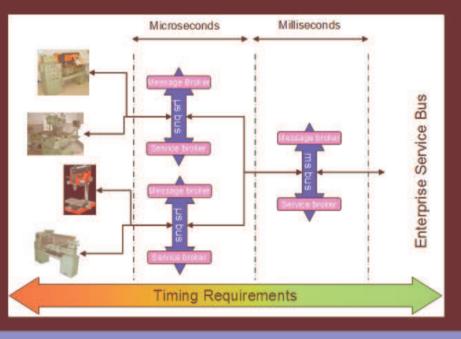
Key Technical Issues



- Energy efficiency with respect to wireless sensor node architectures
- Ultra low power and bandwidth efficient air-interfaces and data transport and networking protocols for wireless sensors, clusters and gateways through cross-layer optimisation
- Distributed resource management for wireless sensors
- Co-existence with other radio interference / signals
- Distributed data processing and collaborative aggregation
- Intelligent data centric interface
- Self organising sensor networks in mobile and dynamic heterogeneous wireless sensor systems and integration into B3G systems and platforms
- Privacy for personal or sensitive information

Energy Efficiency Definition: Eb (nJ/bit) = DC power (mW) / Bit rate (Mb/sec)

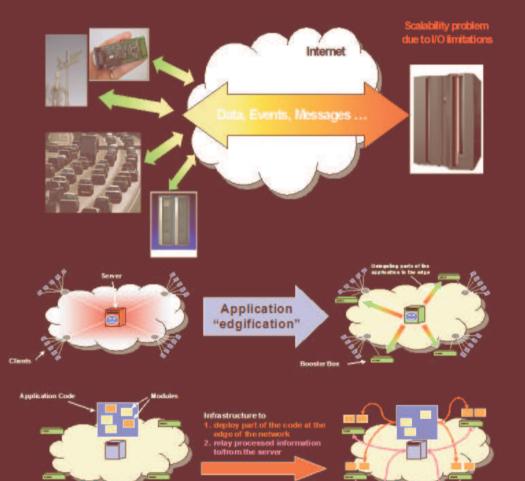
e-SENSE Project Presentation


		STATISTICS. STATISTICS.
	_	_
_	_	

Networking Challenges

IBM Research

- Communication and connectivity functionalities for Sensor and Actuator Networks
 - > Low-footprint stack for sensor networking
 - Multi-hop communication and relaying
 - Self-configuration, self-healing
 - Power optimization
 - > ...
- Connecting S&A networks with applications and services
 - > Publish/subscribe messaging protocols
 - Real-time messaging
 - Resource reservation
 - Admission control



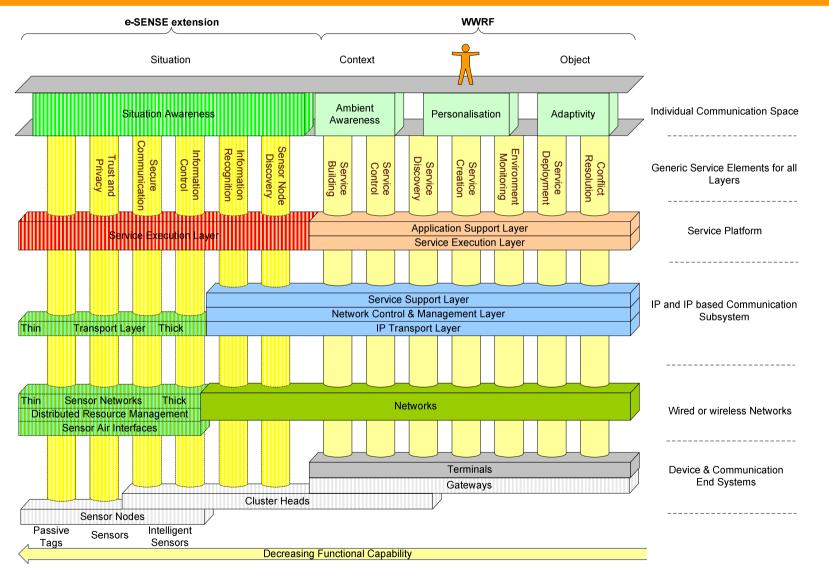
March 6, 2006

Scalability Challenges

IBM Research

- The massive deployment of smart, networked sensors will dramatically affect network volume and traffic patterns
- Significant architectural changes to global IT infrastructure expected
- Processing moves to network edge to aggregate and filter
 - Distributed application processing
 - » Code distribution and management

March 6, 200


e-SENSE addresses

- Sensor Node Architecture
- Sensor Networking Architecture
- Gateway Architecture linking SNs to beyond 3G
- 'Reconfigurable' Communication Framework (Toolbox)
- Secure Communication Architecture
- Privacy and Trust for Sensor Networks

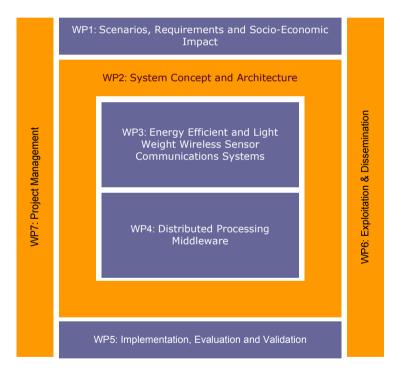
System Architecture and Concept

e-SENSE

e-sense

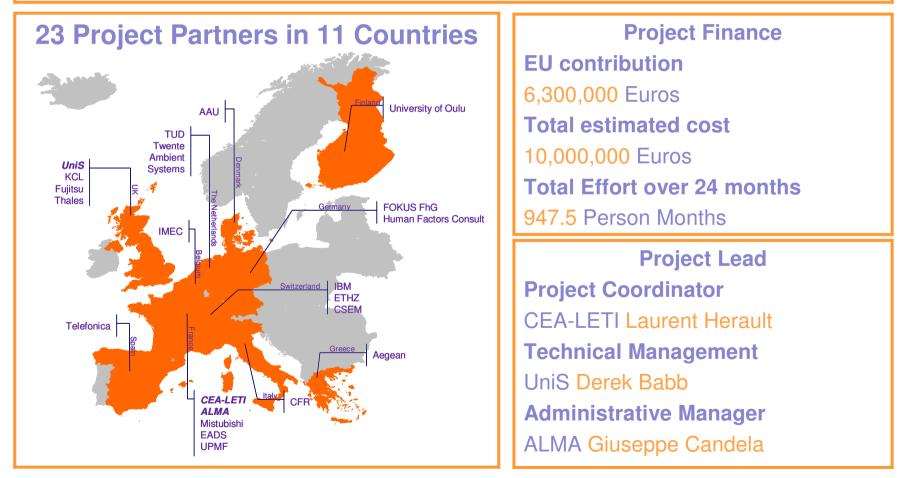
13

• End to End Sensor Networking


- from the sensor output, the communication system, the collaborative aggregation and preprocessing to the context classification and binding into the Service Platform
- Scope:
 - WSNs with distances up to one hundred meters
 - Body Sensor Networks up to high-density largescale networks (e.g. Campus-Wide SN)

e-SENSE Workpackages

- e-SENSE is organised into 7 Workpackages:
 - Scenarios, Requirements and Socio-Economic Impact
 - System Concept and Architecture
 - Efficient and Light Weight Wireless Sensor Communications
 - Distributed Processing
 - Middleware
 - Implementation, Evaluation and Validation
 - Dissemination and Exploitation
 - Project Management



Project Facts

Project Duration 1st Phase 24 months, Kick Off: January 2006 EU Project IST-4-IP, 027227

17

Coordinator Contact Details

	Acronym	e-SENSE	
	Title of the project	Capturing Ambient Intelligence for Mobile Communications through Wireless Sensor Networks	
T, PhD munications Program	Proposal number	IST-4-027227	
	Contract number	027227	
ault@cea.fr	Starting date - End date	01/01/2006 - 31/12/2007	
ble s Cedex 9	Duration (in months)	24	
	Total Budget	10 276 398,65 €	
	Total Manpower (mm)	947.5	
8 78 95 15 8 78 51 82	Community Financial Contribution	6 300 000 €	
	Project Officer(s)	Paulo DE SOUSA	
	Logo	e-sense	
	Website	www.ist-e-sense.org	

DCIS Department CEA -LETI Laurent HERAULT, PhD Head of Telecommunications Prog

email: laurent.herault@cea.fr

Centre de Grenoble 17 rue des Martyrs 38054 Grenoble Cedex 9 France

tel: +33 (0)4 38 78 95 15 fax: +33 (0)4 38 78 51 82

e-SENSE

e-sense

18