FROM RFID TO THE INTERNET OF THINGS
Pervasive Networked Systems

Intelligent and Networked Products
A product and manufacturing perspective

Klaus-Dieter Thoben
tho@biba.uni-bremen.de
The Progress of Competitive Advantage

© BIBA / Thoben

Value Added

(adopted from Pine, 2000)
Achieving customer satisfaction: Complex offerings require complex processes

Providing Solutions/Benefits require:

• complex offerings/products
 – Extended Products
 – Product Service Systems
 – Hybrid Product Service bundles
 – ...

• complex processes:
 – „End to End“ solutions
 – „From Cradle to Grave“ solutions
 – „From Field to Fork“ solutions
 – ...

• Customisation:

© BIBA / Thoben
Evolving the Traditional Concept of a Product

Core Product Tangible Product Tangible and Intangible Product Assets

Manufacturing of Parts Offering of Products / Systems Offering of Solutions Provision of Benefits

Shift of Business Focus

FROM RFID TO THE INTERNET OF THINGS
Brussels, Belgium, March 6th and 7th.
Klaus-Dieter Thoben (tho@biba.uni-bremen.de)
Potential Services Along the Product Life-Cycle

- Disposal of hazardous materials
- Collection services
- Collation of materials
- Dismantling services
- Routine Maintenance
- Benchmarking services
- Repair
- Operations Support
- Formalisation of the needs
- Consultancy services
- Co-development
- Product dependent or independent services
- Services to support co-operations of enterprises
- Qualification and training
- Logistics support

© BIBA / Thoben

FROM RFID TO THE INTERNET OF THINGS
Brussels, Belgium, March 6th and 7th.
Klaus-Dieter Thoben (tho@biba.uni-bremen.de)
Achieving customer satisfaction: Complex offerings require complex processes

Providing Solutions/Benefits require:

- complex offerings/products
 - Extended Products
 - Product Service Systems
 - Hybrid Product Service bundles
 - ...

- complex processes:
 - “End to End“ solutions
 - “From Cradle to Grave“ solutions
 - “From Field to Fork“ solutions
 -...

- Customisation:

© BIBA / Thoben
From Field to Fork
New Products: Dimensions to be considered!

“New Product”

“Old Product”

© BIBA / Thoben
New Products provide new/additional features. New products can
- be identified (have an identity)
- be localized
- communicate with
 - each other; users; environment
- aggregate data about itself (using sensors)
- provide data (e.g operational, status) about itself
- …

How to make best use of new product features / capabilities and increase competitiveness?

Examples to follow:
RFID supported Tracking and Tracing

Access Point ➔ Server

around 1 transponder / storage location

This is a transponder

antenna

5 mm

40 mm

Transponder

FROM RFID TO THE INTERNET OF THINGS
Brussels, Belgium, March 6th. and 7th.
Klaus-Dieter Thoben {tho@biba.uni-bremen.de}
Tracking and Tracing Infrastructure
WLAN supported tools for efficient warehouse management
Smart materials enabling smart products

Mould knowing its temperature

Integration of sensors by Selective Lasersintering or 3D-Printing

Cell meets Surface

Printing and structuring of cells onto technical surfaces through Maskless Mesoscale Material Depositioning (M^3D)
Autonomous Cooperating Logistic Processes: A Paradigm Shift and its Limitations

Collaborative Research Centre (CRC) CRC 637

- Long-term university (basic) research project (up to 3 x 4 years = 12 years)
- Cross-disciplinary research programme,
- Consists of 10-15 sub-projects (from 10 research groups)

Overall Approach:

- To provide autonomy to logistic objects and enable them to make decisions by themselves to route autonomously through a logistics network.
- Investigation of the impacts of the autonomy paradigm on logistics systems and their future development using modified control methods

www.sfb637.uni-bremen.de
From Hierarchical to Autonomous Control

- Hierarchical IT structure
- Global information processing
- Centralised control

Paradigm Shift

- Distributed IT structure with global communication
- Local information processing
- Autonomous decentralised control
Autonomous Cooperating Logistic Processes: Scenario: Transportation Logistics

<table>
<thead>
<tr>
<th>Flexibility:</th>
<th>Cargo is able to choose route A or B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local decision-making:</td>
<td>Cargo uses rules and decides autonomously, e.g., choose the route with the lowest costs.</td>
</tr>
<tr>
<td>Identification:</td>
<td>Cargo, trucks etc. are able to identify themselves.</td>
</tr>
<tr>
<td>Measuring ability:</td>
<td>Cargo recognises a road blocking using sensors on it.</td>
</tr>
<tr>
<td>Decentralised data processing:</td>
<td>Cargo processes its sensor data decentralised by itself and informs other actors in its environment about its situation.</td>
</tr>
</tbody>
</table>

Alternatives for decisions:
Cargo can be transported via hub A as well as via hub B.

Decentralised keeping of data:
Every part of cargo contains its product data and transportation data.

Ability to interact:
Single packages or pallets communicate with each other, e.g., to assemble a cargo.

Local, dynamic system of objectives:
Adaptation of system’s objectives of truck A because of the road blocking, e.g., from “cheapest route” to “due-date delivery”.

FROM RFID TO THE INTERNET OF THINGS
Brussels, Belgium, March 6th. and 7th.
Klaus-Dieter Thoben {tho@biba.uni-bremen.de}
Enablers for Intelligent Products
Product related knowledge representations

Integration of material and product knowledge

Paper based information management:
- Documentation
- Drawings
- BOM

CAD, PDM & ERP:
- Documentation
- Drawings
- BOM
- …

Context Awareness & Auto ID Technology:
- Unique identification
- Communication with its environment
- Capability to retain or store data

Product Avatar:
- Deploys a language to display features, production requirements etc.
- capable of participating in or making decisions relevant to its own destiny

© BIBA / Thoben
Enablers for Intelligent Products
Sensors, actuators, etc.

Smart Tags + Sensors
- Can-BUS access
- Automatic System Diagnostics
- Positioning
- Proximity detection
- Safety sensors
- Etc.

Smart Dust + simple Sensors:
- Temperature
- Air pressure
- Humidity
- # of revolutions
- Simple diagnostics
- Etc.

Mobile Access
- Sensor aggregation
- Sensor history
- Seamless roaming
- Event-triggered transmission

© BIBA / Thoben
Enablers for Intelligent Products:
e.g. Ubiquitous Access
Enablers for Intelligent Products:
Standards and technologies in hybrid world

- Agent Technology
 - Knowledge-based Systems
- Enterprise Systems
 - ERP
 - CRM
 - SRM
 - PPC
- Auto-ID
 - EPC
 - PML
 - OMS
 - Savants
- RFID Smart Tags
- W-LAN, 3GB, ad hoc networks
- Positioning & Navigation
- Product Model
 - STEP
 - IFC
 - ...
- Product Avatar / Virtual Reality
 - Hybrid World
 - Material Product / Real World
- Attributes
 - Virtual
 - Persistent
 - Ubiquitous
 - Flexible
 - Low cost
 - Intelligent
 - Interactive
- Attributes
 - Material
 - Transient
 - Hardly mobile
 - Inflexible
 - High cost
- Context Sensitivity
- Location Based Services
- Ambient Intelligence
- Intelligent Production Environment
What is required to provide „new products“?

- A long lasting life cycle oriented integrated strategy
- A sophisticated communication infrastructure
- Companies that care about their product – beyond warranty
- Concepts, strategies and technologies to enable / support long lasting customer relationship
- To establish a lasting communication channel between Customer and producer
- A central access point to product related data (for producers, service providers and the customers)
- Provision of live-time communication contact with intelligent products …
Thank you for your attention!

Contact:
K.-D. Thoben
BIBA, Bremen
tho@biba.uni-bremen.de
Tel.: 0421-218-5529