

KEY WIRELESS NETWORKING TECHNOLOGIES IN THE NEXT DECADE (LATEST INITIATIVES AT NSF & DoD in the USA)

I. F. AKYILDIZ

Broadband & Wireless Networking Laboratory School of Electrical and Computer Engineering Georgia Institute of Technology Tel: 404-894-5141; Fax: 404-894-7883 Email: ian@ece.gatech.edu Web: http://www.ece.gatech.edu/research/labs/bwn

LATEST NSF INITIATIVES

The GENI (Global Environment for Networking Investigations)

- New architectures for PERVASIVE COMPUTING, mobile, wireless and sensor networks.
- * Building new services and applications
- * Deploying and validating

FIND (FUTURE INTERNET NETWORK DESIGN) (Architecture, Mobile Wireless and Sensor Technologies)

LATEST DOD INITIATIVES

Automated Wide-Area Network Configuration from **High-Level Specifications** Robust Self-Forming Human Networks: Making **Organizations Work** Modification of WiFi Communication Devices to Support the **Urban Warrior** Scalable Mobile Wireless Mesh Networks xG (Dynamic Spectrum Access) Cognitive Radio Networks CBMANET (Control Based Mobile Ad Hoc Networks) BRUSSELS **IFA'06** 3

KEY TECHNOLOGIES

SENSOR & ACTOR NETWORKS
 xG WIRELESS SYSTEMS
 [DYNAMIC SPECTRUM ACCESS NETWORKS]
 COGNITIVE RADIO NETWORKS

KEY TECHNOLOGIES

IFA'06

WIRELESS MESH NETWORKS

I.F. Akyildiz and X. Wang,

"Wireless Mesh Networks; A Survey", Computer Networks (Elsevier) Journal, March 2005. Shorter version in

IEEE Communications Magazine, Sept. 2005.

BRUSSELS

5

FUTURE INTERNET

ALL OF THE ABOVE NETWORKS CO-EXISTING IN A SEAMLESS WAY!!!

KEY TECHNOLOGIES

SENSOR & ACTOR NETWORKS

6K Papers are written the last 5 years!!
A PAPER WRITING RACE!!!
A LOT OF EPSILONs!!!!!!

GRAND CHALLENGE 1:

raditional layered approach is not suitable for WSNs

XLM: Cross-Layer Module M. C. Vuran, O. B. Akan, and I. F. Akyildiz, "XLM: A Cross Layer Module for Efficient Communication in Wireless Sensor Networks," January 2006

GRAND CHALLENGE 2: HOW TO REALIZE THE MAPPING??

User Requirements/ Applications > Architecture and Topology

Communication Protocols

BRUSSELS

FURTHER GRAND CHALLENGES

Cost Reduction to CENTS ?? **Deployment (Architecture) Decisions** (optimal # of sensors, optimal # of sinks, optimal locations, fast deployment, reusability, terrain considerations) How to deal with TERABYTE of sensed information? How to integrate WSNs into NGWI ?? **Optimal Packet Size and Error Control** Scalability SECURITY BRUSSELS **IFA'06** 11

FURTHER PHYSICAL LAYER CHALLENGES

- New Channel Models (I/O/Underwater/Underground/Deep Space)
- Explore Antenna Techniques
- Cognitive Radios ??
- UWB ??

IFA'06

CURRENT PROJECT@GaTech: DoD and NSF Grand Challenges in WSNs

Wireless Sensor and Actor Networks

I.F. Akyildiz and I. H. Kasimoglu, "Wireless Sensor and Actor Networks: Research Challenges" Ad Hoc Networks Journal (Elsevier), pp.351-367, Oct. 200

GRAND CHALLENGES:

Sensor-Actor Coordination & Communication

Actor-Actor Coordination & Communication

REAL-TIME COMMUNICATION!!!!

SENSOR-ACTOR COORDINATION

Challenges:

- Which sensor(s) communicate with which actor(s)?
- How should the communication occur?
- -What are the requirements of the communication (i.e., real-time, energy efficiency)

ACTOR-ACTOR COORDINATION

Challenges:

- Which actor(s) should execute which action(s)?
- -What is the optimum number of actors performing the actions?

CURRENT PROJECT@GaTech: NSF & DoD Exploring Spatial and Temporal Correlation for WSANs IFA'06 BRUSSELS

GRAND CHALLENGE: <u>Multimedia Sensor Networks</u> I.F. Akyildiz, et. al. "Wireless Multimedia Sensor <u>Networks: Research Challenges", May 2006</u>

BRUSSELS

Differentiation between traffic types
 Integrated Traffic: (AUDIO, VIDEO, DATA, STILL IMAGE)
 Delay in/sensitive, Jitter in/sensitive, Loss in/sensitive, Different data rates

Channel Allocation and Scheduling (Multimedia Traffic Management)

FURTHER GRAND CHALLENGES in Multimedia Sensor Networks

- How to guarantee delay bounds; jitter bounds?
- How to realize data aggregation?
- Explore the tradeoffs between media quality and energy consumption!!
- Differentiation of TCP vs UDP traffic
- Distributed source coding at different sensors
- Synchronization (intra-media, inter-media)
- Cross-layer design for multimedia traffic

Underground WSNs: Research Challenges

Dynamic Channel
Power Constraints
Very Low Data Rates
Extremely Lossy Environment
New Communication Protocols needed

UNDERWATER SENSOR NETWORKS

I.F. Akyildiz, D. Pompili, T. Melodia, "Underwater Acoustic Sensor Networks: Research Challenges", Ad Hoc Networks (Elsevier) Journal, March 2005

LATEST DARPA MISSION:

BAA-06-13: SUSTAINABLE LITTORAL SURVEILLANCE (Energy Sources, Sensors, Platforms)

TODAY: Littoral World with Highly Capable, High Priced Assets

SUSTAINABLE LITTORAL SURVEILLANC

Four Part Development Approach (to achieve true **Sustained** Littoral Surveillance)

Research Challenges for UW Sensor Network

- Available bandwidth is severely limited
- UW channel is severely impaired (in particular due to multi-path and fading)
- Very long and extremely variable propagation delays

Very high bit error rates and temporary losses of connectivity (SHADOW ZONES) IFA'06

Research Challenges for UW Sensor Network

Battery power is limited and usually batteries cannot be recharged; no solar energy!!

- Very prone to failures because of fouling, corrosion, etc.
- New communication protocols needed!!

Current Project@GaTech: US NAVY Fundamentals and Protocols for Efficient Communication in UWSNs

IFA'06

BRUSSELS

DYNAMIC SPECTRUM ALLOCATION NETWORKS (XG WIRELESS SYSTEMS; COGNITIVE RADIO NETWORKS)

IFA'06

RESEARCH CHALLENGES in DSANs

I.F. Akyildiz et.al., "Dynamic Spectrum Access (DSANs/xG/Cognitive Radio) Networks: Research Challenges", Computer Networks (Elsevier) Journal June 2006.

- · Architecture
- Cognitive Radio Design
- Mobility Management
- Spectrum Management
 - * Spectrum Sensing
 - * Spectrum Decision
 - * Spectrum Handoff

IFA'06

RESEARCH CHALLENGES in DSANs

Spectrum Sharing

- Sensing Algorithms
- Interference Problems
- Higher Level Protocols Adaptivity
- Fairness and Security

Current Project@GaTech: NSF and DoD OCRA: OFDM Based Cognitive Radio Networks