Measuring Customer and Service Profitability – Introduction

Coleago Consulting Ltd Martin Duckworth, Director 29 November 2004

www.coleago.com

Coleago Consulting

www.coleago.com

- Coleago is a small, niche firm providing highly specialised consulting services to the converging telecommunications, media and technology sectors
- Coleago was created in March 2001 and has created a dedicated team of highly skilled and experienced industry professionals sharing a common approach
- Our consultants' skills are multi-disciplinary covering the areas of strategic planning, market research, market forecasting, model building, project management, regulatory advice, network design, network performance improvement, licence bids and due diligence

Coleago's structure provides 6 points of differentiation from our competitors

- Experienced Professionals
 - The Coleago consulting team comprises only highly skilled and experienced industry professionals
 - > Coleago does not employ any junior or support staff
- Dedicated Service
 - > As a small firm, Coleago provides unrivalled personal service
 - Clients can be sure that the consultant they meet today will be the same consultant who delivers the assignment
- Bespoke Solutions

www.coleago.com

 Coleago recognises that all businesses are different and provides tailored solutions to meet specific client needs

Our low overheads also implies that Coleago can offer greater value compared to other consultancies

- Rigorous Analytical Framework
 - Projects are underpinned by rigorous quantitative analysis, often incorporating the use of a business model
 - Quantitative analysis allows our consultants to focus on the real drivers of value
- Independent Opinions
 - Coleago focuses only on providing independent advice, we have no commercial interest in recommending infrastructure investment or system implementations
- Practical Solutions

www.coleago.com

 Coleago's industry consultants work alongside clients as "one of the team" to ensure that their recommendations are realistic, practical and achievable

```
15
```

Coleago is a niche firm specialising one specific sector but offering a range of services

	Telecoms, Media and Technology
Strategy	Analysis, scenario planning, asset valuation and pricing, positioning, targeting, business simulation
Marketing	Marketing strategy and planning, pricing, forecasting, market research, new services, revenue optimisation, churn reduction
Technical	Network planning, capacity optimisation, cost analysis, auditing, training courses, traffic simulation
Regulatory	LRIC and other cost modelling, interconnect rates, competition review
Business Planning	Business modelling, due diligence, valuation, profitability analysis, risk analysis, cost reduction, planning support
	Underpinned with facilitation, project management and bespoke modelling skills
w coleano com	

Coleago Consulting Ltd Martin Duckworth, Director 29 November 2004

www.coleago.com

Under straight line depreciation, the depreciation expense is even

Coleago Consulting Ltd Martin Duckworth, Director 29 November 2004

www.coleago.com

Call type	BTS Usage	BSC Usage	MSC Usage	TSC Usage	POI Usage
Mobile to fixed	1	1	1	1	1
Call termination	1	1	1	1	1
On-net	2	2	1.75	.75	0

	POI	TSC	► MSC	BSC	BTS T
Unit cost	0.2	0.3	0.4	0.5	0.6
Service Usage	1	1	1	1	1
Service Cost	0.2	0.3	0.4	0.5	0.6

	Fixed and Common	Incremental
Switching	Switch sites	Processors
		Ports
Transmission	Duct and fibre	Transmission equipment
Radio Access	Basic coverage	Additional TRXs
	network	Additional cells
Fixed Access	?	Copper loop
		Line cards

www.coleago.com

117

Separation into fixed and incremental costs – non-Network

	Fixed and Common	Incremental
Sales		Processors
		Ports
Marketing	Branding	Product marketing
Customer care	CRM development costs	Customer care staff and workstations
Billing	Billing system development costs	Cost of bill generation

- The main objective of market sizing is to determine potential demand.
- Ideally a large scale quantitative survey amongst a representative sample of the population provides the main input into a forecast.
- In a questionnaire based survey demand is likely to be be underestimated - develop a questionnaire structure that compensates for this.
- Primary market research will underpin any assumptions made using economic analysis or benchmarks.
- Use a mixture of primary market research, economic analysis, benchmarks and vision.

www.coleago.com

Vario be a	us s-shaped grow symptotically bou	wth curve functions are available, must Inded function.
T 🛛	e upper asymptote arket survey.	e is the potential demand identified in
⊯ P m	earl's equation logistication logistication logistication and the second s	stic curve has advantages in terms of forecasting model.
	Product	Life Cycle Model Formula
	P _t = (1 + a * e where:	2 -b*t)-1
	$P_t = \%$ of the	maximum potential penetration year t
	t = years fro	om launch
	a = a factor s	skewing the curve
	b = a constan and	nt
	$b = \frac{1}{t_m} * (1)$ where:	ln ((a / (1 / 0.99)- 1)))
	t _m = total nur	mber of years to maturity

Price elasticity of demand formula.

Q ₂ =	$Q_1 * (1 + \Delta P * - E)$
	where:
E =	the price elasticity coefficient
$Q_{1,2} =$	the quantity demanded in year 1, 2
$\Delta P =$	the % change price from year 1 to year 2
	Price Elasticity - Applied to Monthly Bill
$\mathbf{B}_2 =$	$= B_1 * (1 + A P * (1 - E))$
	where:
E =	the price elasticity coefficient
$B_{1,2} =$	the average monthly bill in year 1, 2
AP =	the % change in tariffs from year 1 to year 2

Coleago Consulting Ltd Martin Duckworth, Director 29 November 2004

www.coleago.com

Basic Service Costing (Fully Allocated Historic Costs)

- Producing a basic service costing methodology as part of an Accounting Separation framework is relatively straightforward
 - > Data is readily available
 - > "best practice" is well established
- Fully allocated historic costs have known deficiencies
 - > Allocation of common and joint costs will be somewhat arbitrary
 - > Provides no information on whether costs are efficiently incurred
 - Historic costs may be a poor estimate of the current value of long life assets

www.coleago.com

208

	Fixed – core network	Local loop	Mobile network
Competition enabler?	Yes	Yes	No
Network competition?	Yes	Limited	Yes
Wholesale as %age of revenues	Low	Low	High
Position in lifecycle	Mature	Mature	Maturing
Asset lives	Medium	Long	Medium
Upgrade cycle	Continuous	?	Cyclical
Bottom up models	Simple	Difficult	Difficult

The choice of costing methodology will also depend on service to be

